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Most of this article will be about comparatively minor progress in the sphere

packing problem in higher dimensions, but it is a pleasure to record that at last the

original 3-dimensional density problem has been de�nitively solved. The attempted

proof by Hsiang [Hs93] unfortunately turned out to be incomplete.

The Hales Proof of the Kepler Conjecture for 3-dimensional Sphere

Packings

The problem of �nding the greatest density of any packing of equal spheres in

n-dimensional Euclidean space is an old and important one, which has applications

in geometry, number theory, and information theory. It is also di�cult, as is shown

by the fact that although the 3-dimensional case was raised by Kepler in 1613, it has

only recently been solved, by Thomas Hales in 1998, with an important contribution

from S. Ferguson. I shall say only a few words about the argument, which is long

and complicated in detail.

Hales starts from the familiar Delaunay tessellation, which has one cell for each

point of space whose distance from the sphere centers is a local maximum, for which

Sloane and I have introduced the snappy term \deep hole". Then the Delaunay cell

that corresponds to a deep hole is the convex hull of the sphere centers nearest to

that hole, and it is well known that these cells constitute a polyhedral decomposition

of space.
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In the standard face-centered cubic lattice packing, the Delaunay cells are alter-

nately regular tetrahedra T and octahedra O, so that its density is

[vol(T 0) + vol(O0)]=[vol(T ) + vol(O)]

where T 0 and O
0 are the parts of T and O covered by the spheres. However, for a

packing in which the sphere centers are in general position the Delaunay cells will

be simplicial, and so it su�ces to establish the density bound for packings with

simplicial Delaunay cells.

C. A. Rogers long ago showed that vol(T 0)=vol(T ) was an upper bound for

the density of any packing|this is now known as \the Rogers bound". It would be

attained for a hypothetical packing whose Delaunay cells were all regular tetrahedra,

so we may say that the di�culty in the 3-dimensional sphere packing problem is to

show that the Rogers bound must inevitably be worsened to the extent that it is in

the face-centered cubic packing by the presence of the octahedral cells.

In the �rst paper of his series, Hales de�ned a function called the \score" of a

star of Delaunay cells, in terms of another function called the \compression" of a

cell. The compression of the Delaunay simplex S is

vol(S0)� vol(S):vol(O0)=vol(O)

where S0 is the part of S contained in the spheres, and O and O
0 are as above. In

other words, the compression measures how much better S is covered than is the

regular octahedral cell O of the face-centered cubic packing.

A tetrahedron S is naturally divided into four parts (the Voronoi cells of its

vertices), the nth part Sn consisting of those points that are closer to the nth

vertex than any other. In the case that S contains its circumcenter, its score at the

nth vertex is de�ned to be its compression, if the circumradius is at most 1:41, and

4:solid(n)=3� 4:vol(Sn):vol(O
0)=vol(O)

otherwise, where solid(n) denotes the solid angle at that vertex. When S does not

contain its circumcenter, the score is de�ned by continuing the analytic function

corresponding to this expression. The score (measured in \points") of the star

of Delaunay tetrahedra for a given vertex is the sum of these scores over all the

tetrahedra at that vertex. These de�nitions ensure that the average of the score

over all of space is the average of the compression, and reduce the problem to

proving that the average score is at most 8 points.

Two sphere centers are called \close neighbors" if they are distant at most 2.51

from each other, and a Delaunay cell is called a quasi-regular tetrahedron if any

two of its four vertices are close neighbors. In his �rst paper, Hales shows that the

score of a star composed entirely of quasi-regular tetrahedra is indeed at most 8

points. The remaining papers of the sequence are addressed to the much harder

task of extending this result to all the other con�gurations that might arise.

This involves a combinatorial classi�cation of the possibilities, which is in it-

self very long, accompanied by an analytical proof of the appropriate inequality for
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each of thousands of cases. Both parts involved heavy use of machine computa-

tion, and careful selection of various parameters. Hales remarks for instance that

\The constant 2.51 was determined experimentally to have a number of desirable

properties", and similar experimental determinations recur repeatedly throughout

the paper. Several of the initial decisions had to be modi�ed in the light of later

calculations.

Of course a proof of this nature is not at all easy to read! But Hales and Ferguson

have taken great care to make the entire proof accessible to readers who wish to

check any detail. In particular they have started a practice that should serve as

a model for future machine-dependent proofs, by keeping detailed logs of all their

interactions with the machine, so that a potential auditor can discover that on such

and such a day the following cases were handled, of which the last had to be split

into two subcases for which the inequalities became ... . He or she can then rerun

the programs which were used to verify the truth of these inequalities.

Great care was also taken with these proofs. Suppose, for instance, that the

inequality f(x) < g(x) has to be proved for all x in a certain interval. Then typically

the machine will automatically �nd a dissection of this interval into a number of

subintervals, and �nd upper bounds for the derivatives of f and g at the endpoints of

these which yield linear bounds for them that still satisfy the inequality. [For higher-

dimensional intervals this would involve linear programming.] All calculations of

such bounds are done using interval arithmetic, which prevents errors that might

otherwise arise from rounding the numbers.
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Progress in other dimensions: The problem of \best" packings.

In other dimensions, our progress has been limited, and much of it only conjec-

tural. The question we should like to answer is

\What are all the best sphere packings in a given dimension?"

Unfortunately, it is not even clear just what this question means! Despite this,

the paper [CS95] of Conway and Sloane gives a conjectural answer to it in each

dimension up to 10. We shall roughly follow the discussion in that paper, marching

onward from dimension to dimension, discussing both the question and its answers

as we go. As the reader may well suspect, packings of R0 are not particularly

intriguing, and so we begin with:

What are the best sphere packings in R1?

We can regard a sphere packing by spheres of radius r as a collection of points

each pair of which is at least r apart. No matter what the best de�nition of \best"

may be, the best packing of spheres of radius r in R1 is surely the lattice of points

2kr:

And clearly, any packing that can be compacted further should not be called

\best":

Note, perhaps a bit pedantically, that the spheres in a best packing in R1 are

centered on the points of a lattice; we can rescale this to be the root lattice A1,

that is, the lattice generated by the vector (1;�1) in R2. Root lattices will play a

large role in our discussion of best packings; and since the root lattices are canoni-

cally scaled so that the minimum distance between points is
p
2, we will adopt the

convention that all of our sphere packings are packings of spheres of radius
p
2=2.

What are the best sphere packings in R2?

Whatever \best" may mean, the best packing of the plane should of course be

the hexagonal packing (Figure 1), with circles centered on the points of the root

lattice A2, the lattice generated by the vectors, say, (1;�1; 0) and (0; 1;�1):

Clearly \having the highest possible density" is a major component of any good

meaning of \best", and Fejes T�oth has given an elegant proof that no packing in R2

has density exceeding that of the hexagonal lattice A2. However, if we allow this

to be the entire de�nition we get some rather silly \best packings" since density is

only de�ned by a limiting process.
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Figure 1: The A2 lattice packing, �2

For example, beginning with this hexagonal packing, remove any �nite number

of circles. The depleted packing still has the same density, as does the \even worse"

one in which we remove an entire in�nite row of circles. In fact, we can even have

a packing of the optimal density in which no circles are touching! Figure 2 below

is derived from the hexagonal lattice by increasing all distances from the origin by

a �xed multiple of their arctangents, an operation that does not change the overall

density of the packing.

Perhaps we would do better with T�oth's notion of solidity: a packing is \solid"

if there is only one way to replace any �nite collection of spheres we have removed.

Here is a little theorem:

Theorem 1. If two packings in Rn have di�erent densities, then the looser cannot

be solid.

The proof is quite simple. Consider the looser packing. If we carve out a vast

but still �nite region, we will be free to put all the spheres back in the denser

con�guration, with plenty of room around the sides. For example, in Figure 3, we

have replaced 143 circles in the relatively loose square packing with 143 circles from

a much denser hexagonal packing.

Solidity, then, implies having the highest density, and is a good candidate for the

meaning of \best". But unfortunately there seem to be some not-so-good examples

of solid packings. For example, consider the packing in Figure 4. The \upper half"

of a hexagonal packing has been shifted slightly; the shaded circles show the fault

line. Though this packing is clearly not \best", it is almost certainly solid.

Worse still it is extremely di�cult to establish the solidity of any particular

packing. The recent work of Hales, described above, does not su�ce to establish

the solidity of any Barlow packing.

But it is even di�cult to show that there is a solid packing in a given space.

It is possible, and quite plausible in higher dimensions, that solid packings simply

don't exist.
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Figure 2: A bad but maximally dense packing in R2

We might de�ne \best" as something like \having maximum density over �nite

regions". But this de�nition seems to fail. Beyond the completely compacted

packing in R1, every sphere packing in Rn has plenty of empty space; over just

which �nite regions should we measure this density?

So just how should we de�ne \best"? Conway and Sloane were unable to �nd a

satisfactory de�nition and eventually gave up on this aspect of the problem. This

does not force us to give up on the real and apparently meaningful problem of

�nding out just what the \best" packings actually are. Since in any case, we can't

reasonably expect to �nd more than a conjectural answer to the question, the fact

that we can't assign a precise meaning to it is not as distressing as it might have

been!
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Figure 3: Theorem 1

Figure 4: \Solid" 6= \best"
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What are the \best" sphere packings in R3?

We have already commented on one of the most spectacular developments in

recent years, Thomas Hales' settling of the so-called Kepler Conjecture, that no

packing in R3 has greater density than that based on the face-centered cubic lattice

A3
�= D3, viz., the points of the form (i; j; k) with i + j + k even.

As it happens, the face-centered cubic lattice packing is far from being uniquely

the densest; it is only the most symmetrical of an uncountable family of equally

good \Barlow packings", named for the great English crystallographer who studied

some of them in 1883 [Ba83].

It is conceivable that there are other packings in R3 that deserve the name

\best", for Hales showed only that the density of the Barlow packings cannot be

surpassed. Nonetheless, despite the lack of a sound de�nition of \best", it is quite

reasonable to suggest that the Barlow packings are indeed all the best packings in

R3.

To make a Barlow packing of your own, begin with a sheet of spheres arranged

into a two-dimensional hexagonal packing. There are precisely two ways to stack

another such sheet neatly on top of the �rst: we can �t the next layer of spheres

above either of two sets of holes, as shown in Figure 5. Repeating the process, we

face two choices at each layer and altogether can produce an uncountably in�nite

family of packings as promised, all with exactly the same density.

Figure 5: Stacking hexagonal lattice packings

Only two of these are \uniform", however, in the sense that there is a symmetry

of the packing taking any one sphere to any other. To see this, look down upon a
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Barlow packing from above. All the centers of the spheres in any given layer lie in

one of three sets of points, colored white [0], gray [1] and black [2] in �gure 6. In

fact, these points form the unique three-coloring of the hexagonal lattice A2. To

put it another way, the three sets of points represent three cosets of the unique

sub-lattice of index 3 in A2; this sub-lattice is of course isomorphic to A2 itself.

Figure 6: Three cosets in A2.

We call the possible projections of the layers placements, and label them by the

\colors" [0], [1] and [2]. Now there is only one restriction on the possible sequence of

placements of the layers in the Barlow packing, namely that we never use the same

color for two adjacent layers. So the Barlow packings are exactly in correspondence

with doubly in�nite paths in this placement graph, 32 (we will use vk to denote a

graph with v vertices each of valence k):

Alternatively, the Barlow packings are in precise correspondence with the 3-

colorings of A1.

Now any uniform packing exactly corresponds to a path whose vertices are

equivalent under any symmetries of this graph. Clearly, up to labeling, there are

only two such paths: : : : ababababa : : : and : : : abcabcabcabc : : : where a; b; c

is some permutation of the colors [0]; [1]; [2]. Small neighborhoods of these two

packings are shown in Figure 7.

The packing in which the layers cyclically permute the colors is the more special;

this is the face-centered lattice packing with which we began, and it is the only lattice

packing among the Barlow packings.
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Figure 7: Portions of the two uniform Barlow packings: the face-centered cubic

lattice packing and the hexagonal close packing
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Figure 8: No Barlow packing completely occludes all light : : :

It is quite amusing to note that the other uniform packing, the so-called hexag-

onal close-packing, in which the layers occur in just two alternating colors, is the

\least occluding" of all the Barlow packings.

As Figure 8 suggests, no Barlow packing completely occludes all light (part of a

generic packing, is on the lower right; the close-packed hexagonal packing, seen from

a di�erent vantage is on the upper left.) Equivalently, one can always drive rather

thin, in�nitely long stakes in one of three \horizontal" directions, without touching

any of the spheres in the packing. In the face-centered cubic lattice, there is enough

additional symmetry that one can drive thin stakes in three more directions. But

the hexagonal close packing is the only Barlow packing in which there is enough

room for really thick stakes, more than 1=7th the width of the spheres themselves.

These stakes are \vertical" and run through the holes above the third, unused coset

in A2, as seen in Figure 9.
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Figure 9: : : : but the hexagonal close packing is the least occluding of all
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Crystal Balls. The �rst crystal ball of a sphere in a packing consists of that sphere

and those touching it, and inductively, the (n+ 1)st crystal ball consists of the nth

crystal ball and all the spheres that touch it.

In all of the Barlow packings, every sphere has exactly 12 neighbors, so the �rst

crystal ball of any sphere has size 13. However, the second crystal ball can have

size 55, 56, or 57. Consider �ve adjacent layers labeled a; b; c; d; e, where each color

is one of [0]; [1] or [2]. Then the second crystal ball has size 55 plus the number of

\Yes" answers to the two questions:

Is a = c? Is c = e?

The case when a 6= c and c = e, so that there are 56 spheres in the second

crystal ball, is shown in Figure 10.

Figure 10: A second crystal ball has 56 spheres when a 6= c and c = e

There are just four packings that are determined by the set of sizes of their

second crystal balls:

If no crystal ball has size 56, then the answers to alternate questions from the

sequence

: : : Is a = c? Is b = d? Is c = e? : : :

must always agree and we obtain one of three packings:
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Packing Answers Coloring Sizes

�1
3 : : : NNNN : : : 55

�2
3 : : : YYYY : : : 57

�3
3 : : : YNYN : : : 55,57

We have already seen �1
3 and �2

3; these are the two uniform packings, viz., the

face centered cubic lattice packing and the hexagonal close packing.

If all the crystal balls have size 56, then alternate answers must always be

di�erent and we have a fourth packing

�4
3 : : : YYNNYYNNYY : : : 56

There are uncountably many Barlow packings with some second crystal balls

of size 56 and some with size 55 or 57 or both, so these four are the only Barlow

packings determined by the sizes of their second crystal balls.

Since all of the second crystal balls in the face-centered cubic lattice packing

contain 55 balls, and all of those in the hexagonal close packing contain 57 balls,

the average number of spheres in the second crystal ball in any large region of a

Barlow packing is therefore between that of the two uniform Barlow packings. And

so it is natural to suspect that the number of spheres in the nth crystal ball of any

sphere in any Barlow packing is bounded above by the size of an nth crystal ball

in the hexagonal close packing, and below by the size of the nth crystal ball in the

face-centered cubic lattice packing.

Conway and Sloane vere�ed this by showing that the number of spheres in any

nth crystal ball in the face centered-cubic lattice packing is (5�n4+�n2)=6 where

�nk = (n+ 1)k� n
k; similarly the number of spheres in any nth crystal ball in the

hexagonal close packing is [7�n4=8]. And indeed the number of spheres in any nth

crystal ball in any Barlow packing is bounded below by the former and above by

the latter (a conjecture that was only later made by O'Keefe).

The Hypothetical Answers

The Barlow packings generalize quite nicely to a conjectured description of all

the best packings in low dimensions:

A n-dimensional packing Pn �bers over an m-dimensional packing Pm if Pn
can be decomposed into sets (e.g. layers) of points lying in parallel m-dimensional

spaces, each one of which is a packing of type Pm. In particular, then, the Barlow

packings all �ber over the hexagonal packing in R2.

Hypothesis n : The best packings in Rn �ber over one of the best packings in Rm,

where m is the largest power of 2 less than n.
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Conway and Sloane believe (but cannot prove) that Hypothesis n is true for

2 � n � 8. Hypothesis 9 requires some adjustments, and the Hypotheses are

irredeemably false for n � 10.

Figure 11:

Let us �x some ideas: Suppose Pn is an n-dimensional packing that �bers over

an m-dimensional packing Pm. Let A be the projection onto the space of a layer

Pm of a point in another layer P 0

m
. Let x be the distance of A from the closest point

of Pm and let y be the separation between the layers Pm and P
0

m
as illustrated in

Figure 11. Then x is at most the covering radius R of Pm and x2+y
2 � 2 (because

our spheres are of radius 1=
p
2, so y is at least

p
2�R2).

Let Q be the projection of Pn onto the space P?

m
. Surrounding each point of Q

by a sphere of diameter
p
2� R2, we obtain a sphere packing in P?

m
. If Pn is to be

\best", plainly the packing in P
?

m
must be \best" (The hypothesis asserts that all

best packings can be obtained this way taking m to be the greatest power of 2 less

than n.) This can only occur if for adjacent layers Pm and P
0

m
, every point of Pm

lies above a deep hole of P 0

m
.

Before marching o� at the rapid rate the Hypotheses will allow us, let us turn

back and see Hypotheses 2 and 3 applied to produce the best packings in R
2 and

R
3.

Proposition 2 (using Hypothesis 2) The unique \best" packing in R2 is the

triangular packing A2.
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Figure 12: Applying Hypothesis 2 : : :

Proof. Hypothesis 2 tells us that any best packing in R2 �bers over A1, the unique

best packing in R1. The dual lattice A�

1 is the union of two cosets [0] = A1 and

[1] = A1 + (1
2
;�1

2
). Each of the cosets consists of the deep holes of the other. The

covering radius of A1 is 1=
p
2. The distance y between layers must be at leastp

2� 1=2 =
p
3=2; this can be achieved only for the packing shown in Figure 13,

in which alternate layers are the cosets [0] and [1] of A1 in A
�

1. The packing Q is a

rescaled A1, in which the points are colored alternately [0] and [1]. Of course, this

is a description of the root lattice A2. 2

As with the Barlow lattices, we can describe the placements of the layers of the

A2 lattice packing. The allowed sequences of possible placements corresponds to

paths in the placement graph, in this case, merely the graph 21:

More generally, the layers in a \best" packing can only have a certain set of

projections onto the starting layer; these are the placements. Two placements are

joined by an edge in the placement graph just if they can correspond to layers at

the minimal distance
p
2�R2, that is, just if each point of either projects into a

deep hole of the other.
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Figure 13: : : : to prove Proposition 2

Fibering over A2 Several times we will be �bering over A2. The lattice A
�

2 dual

to A2 consists of the three cosets

[0] = A2; [1] = A2 +
1

3
(2;�1;�1); [2] = A2 +

1

3
(�2; 1; 1)

of A2. The set of deep holes in any one of these cosets is the union of the other two

cosets, and the covering radius is
q

2

3
. Each of the cosets [0]; [1]; [2] and their union

A
�

2 is a version of the hexagonal lattice. This is, of course, precisely the illustration

shown earlier in Figure 6.

Proposition 3 (using Hypotheses 2 and 3) The \best" packings in R3 are the

Barlow packings.

We already have given a rather informal description of the Barlow packings as

something like a �bering. Let's go through the process more carefully:

Proof. Let �3 be a best packing in R
3. Hypotheses 2 and 3 tell us that each layer

in any �3 is a copy of A2 and that the separation between any two layers is at leastp
2� 2=3 =

p
4=3. Now suppose adjacent layers are always at this distance, and

choose any particular layer to be [0] = A2. Then the next layer must be a copy of

A2 contained in [1][ [2]. However, since squared distances in A2 are even integers,

the next layer cannot contain points from both [1] and [2] (the squared distances

between which have the form (2n+2=3) and so must be all of [1] or all of [2], say [1].

The layer after this must be [0] or [2], etc. This is of course the way we described

the Barlow lattices earlier. 2
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Now we use the hypotheses to make short work of the next several dimensions:

What are all the \best" packings in R4?

Proposition 4 (using Hypotheses 2 and 4) The unique best packing in R4 is the

root lattice D4

Figure 14: In the proof of Proposition 4, both �ber and quotient are two-dimensional

Figure 15: The unique three coloring of the hexagonal lattice packing

Recall that the points ofDn are the points in Z
n with the sum of the coordinates

even.

Proof. Here both the layers and the quotient space are two-dimensional (Figure

14, and any best packing must come from a three-coloring of the two-dimensional

packing Q, a rescaled version of A2. However, this three-coloring is unique (Fig. 15)

and is completely determined by the colors of any three mutually adjacent circles.

The resulting lattice is D4. 2
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The dual lattice D�

4 consists of four cosets

[0] = D4; [1] = D4 +
1

2
(1; 1; 1; 1); [2] = D4 + (0; 0; 0; 1)

[3] = D4 +
1

2
(1; 1; 1;�1)

and the set of deep holes in any one of these cosets is the union of the other three.

The covering radius is 1.

What are all the \best" packings in R5?

Proposition5 (using Hypotheses 2, 4 and 5) The best packings in R5 are parametrized

by paths along the edges of a tetrahedron. Just four of them are uniform packings,

and just one of these is a lattice packing.

Proof. The usual argument shows that any two layers must be separated by at leastp
2� 1 = 1, and that if two layers D4 and D

0

4 are separated by just this distance,

the points of D0

4 must lie above the deep holes of D4. In other words, D0

4 projects

into the union of the cosets [1]; [2] and [3]. As before, this image cannot contain

points from more than one of these cosets and so must be a single coset [1]; [2] or

[3]. So this time, we have four possible placements for each layer, and once again

the only restriction is that we may not use the same placement twice in succession.

The placement graph is thus a tetrahedron, 43:

Any \best" �ve-dimensional packing is given by a sequence of placements

: : : abcde : : :

which corresponds to a doubly in�nite path along the placement graph.

For a uniform packing, there are several cases. First, if only two placements are

used, say [0] and [1], we have the root lattice D5 corresponding to the coloring

�5
1

The corresponding path, of course, winds back and forth across a single edge of

the tetrahedron (shown at left in Figure 16). D5 has quite a bit of symmetry and

can be decomposed into layers in several such ways.

In any other uniform packing any three adjacent latters must be distinct. More-

over, the division into layers is characteristic: adjacent spheres A and B are in the

same layer just if there is a third sphere C touching B antipodally to A.
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We now consider the spheres within the second crystal ball of a given sphere, in

layer c, say, among the �ve consecutive layers a; b; c; d; e, and we can ask the two

questions

Is a = d? Is b = e?

The set of answers must be the same for every sphere and determines the packing.

�5
2 NN

�5
3 NN

�5
4 NN

In Figure 16 we see the paths in 43 that give rise to these four uniform best

packings in R5.

Figure 16: Paths in 43 giving rise to uniform best packings in R5

Thus there are four uniform packings, �rst found by Leech [Le67]. It turns out

that �n5 consists of n translates of a lattice packing (n = 1; 2; 3; 4) 2.

What are all the \best" packings in R6?

Proposition6 (using Hypotheses 2, 4 and 6) The best packings in R6 are parametrized

by 4-colorings of the A2 lattice. Just four of them are uniform.

Proof. The main assertion goes as before.

Let us consider the the colors of six neighbors of a circle colored d in A2. There

are essentially just four possibilities for the colors:

abcabc

abacbc

ababab

ababac

For a uniform packing, every circle in the A2 quotient must be surrounded in

the same way as every other. It happens that each of the four types gives a unique

uniform coloring, as shown in Figure 17, the �rst being the root lattice �6 = E6.

Once again, the packing �n6 consists of n translates of a lattice (n = 1; 2; 3; 4). 2
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Figure 17: The four colorings that give the uniform best packings in R6
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What are all the \best" packings in R7?

Proposition 7 (using Hypotheses 2, 3, 4 and 5) The best packings in R7 �ber over

D5 and can be parametrized by choosing a Barlow packing and a \period 2 coloring"

of one of its A2 layers (as de�ned below). Alternatively, such a packing is speci�ed

by an ordered pair consisting of a doubly in�nite path on a triangle 32 and one on

a square 42. Just four of these packings are uniform.

Proof. In the usual way, we �nd that any best packing �7 is determined by a best

packing �3 in R
3 and a 4-coloring of it. But here we have a new feature: there are

in�nitely many choices for �3.

Figure 18: Two possible colorings of a neighborhood can be ruled out : : :

However, in compensation, we �nd that any 4-coloring of any possible �3 is

completely determined by its restriction to any layer (each sphere of the next layer

touches three spheres in this one and so must be of the unique remaining color.)

Figure 19: : : : leaving two possibilities

Of the four ways to surround a sphere in a 4-coloring of the A2 packing which

form these layers, we �nd that we cannot use the cases ababab and ababac, since in

each case, either choice for the next layer forces two contiguous spheres to have the

same color (Figure 18). We have therefore shown that among the six neighbors of

a sphere in any layer A2 of �3, some pair of antipodal points has the same color,

since the other two cases abcabc and abacbc have this property (Figure 19).

We next deduce that:

the A2 can be decomposed into parallel A1's, each of which uses just two colors.

For if every sphere in A2 is surrounded as at left in Figure 19 then the coloring

has period 2 in all directions. If any one sphere is surrounded as at right in Figure

19 then we ask: what is the pair of like-colored antipodal spheres around the white

sphere at the right in Figure 19? The only possibility is that one of these spheres is
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Figure 20: One may slide the rows; the coloring is parametrized by the colors along

a strip

the central black sphere. Repeating this argument, we obtain Figure 20, in which

each row alternates between two of the colors.

The most general �7 is therefore obtained as follows: We �rst choose any Barlow

lattice �3. As described before this corresponds to a choice of doubly in�nite path

in a triangle 32. We next color one row of an A2 layer in this �3 with two of the

four colors, say 0 and 2. We then color the next row 1 and 3, the next row after

that 0 and 2, and so forth. The coloring of this layer, and consequently that of our

�3 itself, is completely speci�ed by a doubly in�nite path on the square graph 42

found from a sloping line such as that indicated in Figure 20. So altogether, as

promised, our packing �7 is speci�ed by a pair of doubly in�nite paths, one in 32,

the other in 42.

Moreover, since each horizontal line in our diagrams represents a translate of

D5, all such packings �ber over D5.
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There are just four cases that give uniform packings. We can extend the coloring

to either the face centered cubic lattice packing (giving �1
7) or the hexagonal close

packing (�2
7), or the coloring

to the face centered cubic lattice packing (�3
7) or the hexagonal close packing (�

4
7).

The �rst of these is the root lattice �7 = E7 and for n = 1; 2; 3; 4 the packing

�n7 consists of 1,2,2,4 translates of a lattice. 2

What are all the \best" packings in R8?

Proposition 8 (using Hypotheses 2, 4 and 8) The best packing in R8 is unique,

and is the root lattice �8 = E8

Proof. A best packing �8 in R8 is determined by a 4-coloring of a (rescaled) �4,

equivalently, of the lattice D�

4. We show that this coloring is unique, and in fact

assigns each vector of D�

4 to the coset of D4 it determines.

Consider the spheres of D�

4 centered at the points shown in the table. We start

by arbitrarily assigning colors 0; 1; 2 to the three contiguous spheres A;B;C. Then

D must be colored 3 since it touches each of these. In a similar way, we determine

the colors of all the remaining spheres in the table. It follows that this (possibly

partial) coloring is invariant under permutations of the coordinates. This is because

any such permutation �xes A and B, and either �xes C or takes it to another sphere

like E which has been assigned the same color.

The spheres mentioned in the table, and their permutations, show that the

coloring is also invariant under changing the signs of any even number of coordinates.

It is similarly invariant under the subtraction of (1; 1; 0; 0). Since the images of
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Table 1: The unique 4-coloring of D�

4

Sphere Coordinates Color Touches

A 0 0 0 0 0

B
1

2

1

2

1

2

1

2
1 A

C 0 0 0 1 2 A;B

D �
1

2

1

2

1

2

1

2
3 A;B;C

E 0 0 1 0 2 A;B;D

F �
1

2
�
1

2

1

2

1

2
1 A;C;D

G �
1

2
�
1

2
�
1

2

1

2
3 A;C; F

H �1 0 0 0 2 A;D;F

I �
1

2
�
1

2
�
1

2
�
1

2
1 A;G;H

J �1 �1 0 0 0 G;H; I

(1; 1; 0; 0) under permutations and even sign changes generate D4, all points of any

coset of D4 are assigned the same color, and hence the coloring and the packing are

unique. 2

What are all the \best" packings in R9?

It is astonishing that although Blichfeldt completed the solution of the lattice

version of the sphere packing problem in dimensions up to eight before 1930 (cf.

[CS99]), the intervening sixty years have seen essentially no progress on the nine-

dimensional problem. So it is only to be expected that the non-lattice problem will

have new features in nine dimensions. We now discuss more and more surprising

putatively \best" packings in nine dimensions.

Needless to say, we are nearing the end of the usefulness of our Hypotheses. But

for the moment, we suppose the truth of Hypothesis 9, and use also Proposition 8,

which depended in turn on Hypotheses 2, 4 and 8.

Translation

It is known [CS99] that the deep holes in E8 are members of the lattice 1

2
E8. It

follows that if all the layers of a best packing �9 di�er by translations, then all the

corresponding placements correspond to members of 1

2
E8. However, since shifting

by a member of E8 has no e�ect, it is better to regard the placements as members

of the quotient 1

2
E8=E8.

We recall from [CS99] the structure of this group. There are 28 = 256 cosets of
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E8 in
1

2
E8, and the shortest vectors in a coset are:

(i) the zero vector (1 coset),

(ii) �1

2
u (120 cosets),

(iii) �1

2
v1 � : : :� 1

2
v8 (135 cosets),

where u 2 E8 is a norm 2 vector and v1; : : : ; v8 2 E8 are mutually orthogonal norm

4 vectors that are congruent modulo 2E8. The deep holes correspond to the 135

type (iii) cosets. The placement graph for this problem, therefore, has as nodes

these 256 cosets, and two nodes are joined by an edge whenever the di�erence of

the corresponding cosets is of type (iii). This does indeed have valence 135. We

have thus proved:

Proposition 9A. The best packings in R9 in which the layers are all translates of

one another are parametrized by doubly in�nite paths on the above graph 256135.

Rotation

If we allow adjacent layers to be related by rotations as well as translations,

there are many more possibilities. To �nd out how many, we �rst consider the

relationship between two adjacent layers E and F . We suppose that E is the usual

E8 de�ned with respect to the standard basis e1; : : : ; e8.

Each sphere of F lies above a deep hole v of E and will touch 16 spheres of E.

If we take v = e1 = 10000000, these will be the E spheres centered at

v � e1; : : : ; v � e8;

and we remark that E contains all the vectors

z1e1 + : : :+ z8e8

for which the zi are integers with even sum, and also all vectors

�
1

2
e1 � : : :�

1

2
e8

for which the number of minus signs is even.

However, the relation between E and F is symmetrical! There will therefore be

16 F -spheres

�f1 � : : :� f8

touching the E-sphere centered at the origin, and F will contain all the vectors

v + z1f1 + : : : z8f8

for which the zi are integers with even sum, and also either all vectors

�
1

2
f1 � : : :�

1

2
f8

for which the number of minus signs is even, or all those for which this number is

odd. The vectors �f1; : : : ;�f8 must be an orthonormal basis of deep holes in E,
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one of which is the particular vector 10000000. Up to symmetries of E8 it turns out

that there are just four possibilities for the doubled vectors 2f1; ::; 2f8, as shown in

Table 2.

Table 2: All possibilities for orthonormal bases �f1; : : : ;�f8 of deep holes in E8

containing e1. + and � denote +1 and �1, and parentheses indicate that all cyclic

permutations of the enclosed coordinates are to be applied. [The cases are named

after the codes obtained by reducing their coordinates modulo 2 (see [CP80]).]

case 2fi group index

d0 (20000000) 27 :S7 20:1 = 1

d4
(2000) 0 0 0 0

0000(�+++) 26 :S3 � S4 21:35 = 70

d6
(20) 0 000 00

00(�+0++0) 24 : 23S3 23:105 = 840

e7
(2) 0 0 00000

0(�++0+00) 27 :PSL3(2) 26:30 = 1920

Each of these cases leads to a unique choice for F , since F may not contain

the vector 1

2
f1 + : : : + 1

2
f8 = 1

2
e1 + : : : + 1

2
e8, which is already in E. We omit

the arguments proving that these cases survive, and that the list is complete. We

next compute the number of possibilities for F . For each case the table shows the

structure of the group that �xes or negates the leading vector 20000000, and its

index in the subgroup 27 : S7 of all automorphisms of E that do this. We conclude

that the total number of such frames that contain the vector 20000000 is

1 + 70 + 840 + 1920 = 2831

and so the total number of choices for F is

2831 �
2160

16
= 382185

since there are 2160 norm 4 vectors we could use in place of 20000000 and each of

the frames contains 16 such vectors. From this we obtain:

Lemma 9B. The best packings in R9 whose layers di�er by arbitrary rotations

and translalions are parametrized by doubly in�nite paths on a placement graph of

the form 1382185.

The reason there are in�nitely many possible placements is really that the au-

tomorphism group of E8 is a maximal �nite subgroup of the eight-dimensional or-

thogonal group, and two placements may di�er by a rotation not in this subgroup.

We can for instance �nd a best packing of R9 in which every pair of alternate layers

is related by the matrix
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1

2

0
BBBBBBBBBB@

2 0 0 0 0 0 0 0

0 � + + 0 + 0 0

0 0 � + + 0 + 0

0 0 0 � + + 0 +

0 + 0 0 � + + 0

0 0 + 0 0 � + +

0 + 0 + 0 0 � +

0 + + 0 + 0 0 �

1
CCCCCCCCCCA

(corresponding to case e7), whose characteristic polynomial

(X � 1)2(X2 +
3

2
X + 1)3

shows it to be of in�nite order. Since there are in�nitely many placements but just

382,185 possibilities for a neighbor of a given one, the placement graph does indeed

have type 1382185.

Flotation

It seems that of all these packings, only the lattice packing �1
9 = �9, was pre-

viously known. This was �rst described by Korkine and Zolotare� [KZ73] in 1873

and is their packing T9 [CS99]. We describe it in some detail, because it can be

modi�ed in interesting ways.

�9 consists of the vectors

(x1; : : : ; x8; 2n) and (x1; : : : ; x8 + 1; 2n+ 1);

where (x1; : : : ; x8) is a typical vector of E8 in the standard coordinate system, and

n is any integer.

However, we can look at these vectors in another way! The ones with integral

coordinates constitute the lattice D9, and so

�9 = D9 [ (D9 + v); where v =

�
(
1

2
)8; 0

�

This leads us to ask:

Are there other vectors w for which the points of the \uid diamond packing"

D9(w) = D9 [ (D9 +w)

have minimal distance
p
2?

Lemma 9C. The answer to the above question is \Yes"! In fact there are uncount-

ably many choices for w!

The condition is just that the squared distance of w from the nearest point ofD9

should be at least 2, and this is achieved for instance if any eight of the coordinates

of w are halves of odd integers, the ninth then being completely free. Let us write
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D
�+

9 = D9 +

�
(
1

2
)8;

1

2
�

�
:

Then D
0+

9 = �9 and D
1+

9 = D
+

9 is the nine dimensional diamond packing [CS99].

Gold and Silver Among the Diamonds. We say that a sphere in a uid

diamond packing D9(w) is \golden" if its center is in D9, and \silver" if its center

is at a point of D9 + w. Then if the squared distance of w from D9 is strictly

greater than 2, no silver sphere touches any golden one. So the packing �9 has the

remarkable otation property described in the following theorem.

Flotation Theorem. Let X and Y be two silver spheres in �9. Keeping the golden

spheres �xed, the silver spheres can be collectively moved so that the �nal position of

X is the original position of Y . Usually the silver spheres do not touch the golden

ones, and at no time do any two spheres ouerlap. At every stage in the motion the

packing is of type D�+

9 for 0 � � � 1.

Proof. Let (x1; : : : ; x9) and (y1; : : : ; y9) be the centers of X and Y .Then x9 and y9
are integers, but the other coordinates xi and yi are halves of odd integers. The

desired motion is performed in 10 stages. In stage 0 we �x x1; : : : ; x8 and increase

x9 smoothly by 1

2
. Then at stage n, 1 � n � 9, we move the nth coordinate to yn

keeping the others �xed. At all times in this motion, eight of the coordinates are

halves of odd integers, and so the spheres at no time overlap. Only at the instants

when some coordinate of w is an integer does any silver sphere touch a golden one.

2

Unfortunately the existence of these \oating packings" violates our Hypothesis

9. We therefore simply weaken that Hypothesis to:

Hypothesis 9*. Every best nine-dimensional packing either �bers over �8 = E8,

or is a uid diamond packing.

This is not quite so despicable as it seems, since at least Hypothesis 9* entails

that every tight nine-dimensional packing is isotopic to one that �bers over �8.

(Two best packings of spheres of a given radius are said to be isotopic if one can be

continuously deformed into the other through best packings of spheres of the same

radius.)

We summarize our beliefs in:

Proposition 9 (depends on Hypotheses 2, 4, 8, and 9*) The best nine-dimensional

packings are of two kinds:

(i) Packings containing E8, which are parametrized by random walks on

the graph 1382185.

(ii) FIuid diamond packings D9(w), parametrized by the vector w.

There is an uncountably in�nite collection of uniform packings.
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Proof. Only the last assertion remains to be proved. The uid diamond packing

D9(w) is seen to be uniform because it has the symmetries

x 7! v + x

x 7! w + v � x

for every v 2 D9, and these act transitively on the spheres. 2

Our real reason for believing this proposition is not that we �nd Hypothesis 9*

inherently plausible (indeed, the otation property initially made it seem extremely

implausible), but rather that we have tried and failed many times to produce any

other packings which are at least as good as those described there. The reader who

�nds our arguments unconvincing is invited to produce a putatively best packing

not covered by the proposition!

What are the \best" packings in R10

Now we have come to the end of the useful life of the Hypotheses. It is not hard

to �nd the best packings in dimensions 8 + n, 0 � n � 8 that do �ber over E8.

They are parametrized by what we might call1382185-colorings of the best packings

�n. In other words, the \color" assigned to each sphere of �n, is a node of the

placement graph 1382185 of Lemma 9B, and adjacent spheres must be colored by

nodes that are adjacent in this graph. However, one such packing is the laminated

lattice �10 whose density is strictly exceeded by the l0-dimensional packing found

by Malcolm R. Best and briey described below.

So we have:

Proposition 10 (depends on Hypotheses 2, 4, and 8) Hypothesis 10 is false,

even upon being weakened up to isotopy. The best known packing in R10 is due to

Best.

Best's packing is a uniform packing, for which Conway and Sloane have recently

given a very simple construction [CS94].

The Pentacode consists of all cyclic shifts of the four vectors

01112; 03110; 21310;21132;

and their negatives, where the digits are integers modulo 4. (These eight words are

all the words of the form c � d; b; c; d; b+ c, where b; c; d are odd.) We obtain the

centers of Best's l0-dimensional packing by replacing each digit of a word of the

pentacode by two integers according to the following scheme:

0! even, even

1! even, odd

2! odd, odd

3! odd, even

Our assertions about this packing follow from [CS94].

30



Proposition 10 suggests that an appropriate modi�cation of Hypothesis 10 might

be:

Hypothesis 10* (\Best is best"). Best's packing is the unique best packing in

10 dimensions.

The authors are of 2 + � minds about the possible truth of this hypothesis.

Hypotheses 11, 12 and 13 fail as dramatically as Hypothesis 10 does. How-

ever, there may be some truth to Hypotheses 14, 15 and 16, and so some value in

understanding the packings �8+n that do �ber over E8.

Unfortunately the description in terms of1382185-colorings of �n, does not make

it clear a priori that there is more than one such �8+n However, we remark that

the graph 1382185, and indeed its subgraph 256135 contains a copy of the complete

graph 1615 on 16 points. This is because E8 can be embedded in a scaled copy E+
8

of itself having half the minimal norm [CS99]. Then E
+

8 consists of 16 cosets of

E8,and we can take those to be the desired 16 placements, since any two of them

di�er by a deep hole vector. This shows us that there is a particular packing �8+n

corresponding to any 16-coloring of any tight packing �n.

We estimate that this method gives us more than 107 distinct, putatively best,

16-dimensional packings having the same density as the Barnes-Wall lattice �16.

This lattice �16 itself is one of these packings. It corresponds to a 16-coloring of E8

in which the colors correspond to the cosets in E8 of a sublattice E
�

8 that is a scaled

copy of E8 at twice the minimal norm. The automorphisms of E8 permute these

16 colors in just j16:GL4(2)j = 8:8! ways. So by applying all 16! color permutations

we may expect to obtain at least 16!=8:8!> 107 best packings �16.

Best Known Packings in Dimensions Greater Than 10

In higher dimensions, there is little reason to suspect that the best known pack-

ings are the best possible packings. We o�er only one more hypothesis, Hypothesis

12* below.

For the rest of this paper we will take a quick look at some of the current best

known packings in higher dimensions.

The Laminated Lattice Packings

Most of the best known packings fall into this sequence, which is de�ned in-

ductively. The n-dimensional laminated lattices having a given minimum being

supposed to be known, one obtains those of dimension n+ 1 by selecting the dens-

est lattices of this dimension that contain an n-dimensional laminated lattice and

have the same minimum. So for example, by laminating �1 = A1, we have the

hexagonal lattice �2 = A2; laminating this we have the face-centered cubic lattice

�3 = A3, and so on.

The particular cases are easiest discussed in terms of the Leech Lattice, whose

discovery revolutionized this subject in 1969, so we'll de�ne that �rst.
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The Leech Lattice consists of the vectors in R24 whose coordinates are all con-

gruent modulo 2, say to m, and have sum congruent to modulo 8 to 4m, while the

set of coordinates taking a given value modulo 4 is the support of a word in the

binary Golay (24, 12, 8) code, for which see page 84 of [CS99].

We shall describe the laminated lattices of dimension up to 24 as sections of the

Leech Lattice, supposing that the coordinates of the latter are grouped in a \sextet"

of six tetrads the union of any two of which is a special octad|the support of a

Golay codeword of weight 8. Then according to the dimension we take the vectors

of the Leech Lattice that are supported on suitable subsets of the coordinates and

satisfy the following conditions:

�1
�= Z �= A1: two coordinates of the �rst tetrad whose sum is zero.

�2
�= A2: three coordinates of the �rst tetrad whose sum is zero.

�3
�= A3

�= D3: three coordinates of the �rst tetrad.

�4
�= D4: the �rst tetrad.

�5
�= D5: �rst and second tetrads, the 4 coordinates of the latter being equal.

�6
�= E6: �rst and second tetrads, the last 3 coordinates of the latter being

equal.

�7
�= E7: �rst and second tetrads, the last 2 coordinates of the latter being

equal.

�8
�= E8: the �rst and second tetrads.

�9: �rst three tetrads, the coordinates of the third being equal.

�10: �rst three tetrads, the last 3 coordinates of the third being equal.

�11: �rst three tetrads, the last 2 coordinates of the third being equal.

�12: the �rst three tetrads.

�13: �rst three tetrads, and two coordinates of the fourth having zero sum.

�14: �rst three tetrads, and three coordinates of the fourth having zero sum.

�15: �rst three tetrads, and three coordinates of the fourth.

�16: the �rst four tetrads.

�17: �rst four tetrads, and two coordinates of the fourth having zero sum.

�18: �rst four tetrads, and three coordinates of the fourth having zero sum.

�19: �rst four tetrads, and three coordinates of the fourth.

�20: the �rst �ve tetrads.

�21: all six tetrads, the 4 coordinates of the sixth being equal.

�22: all six tetrads, the last 3 coordinates of the sixth being equal.

�23: all six tetrads, the last 2 coordinates of the sixth being equal.

�24: all six tetrads.

This is all summarized neatly in the Figure 21, reproduced from [CS99].
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Figure 21: Coordinates for �0; : : : ;�n as sections of the Leech Lattice. A small

circle represents a zero coordinate, a hollow loop is a set of coordinates adding

to zero, and asterisk is a free coordinate, and a line of asterisks is a set of equal

coordinates.
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We should mention that in dimension 11 there are two distinct laminated lattices,

and in dimension 12 and 13, three: the ones described above are those with maximal

kissing number. However, the laminated lattices in all other dimensions below 25

are unique. The sequence has been continued to dimension 48, there being known

to be just 23 distinct laminated lattices of dimension 25, and conjecturally many

millions in dimension 26 and higher.

The alternative \Kappa" sequence is summarized in the Figure 22 reproduced

from [CS99]. This sequence diverges from the above \Lambda" sequence in dimen-

sions 6 through 18.

Figure 22: Coordinates of the lattices K0; : : : ;Kn as sections of the Leech Lattice.

The best lattice packings known in dimensions 1 through 29 are all among those

in these two sequences, as is summarized in the following chart reproduced from

[CS99]. Note that the Kappa sequence provides denser packings only in dimensions

11, 12, and 13.
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Figure 23: The densest sphere packings known in dimensions n � 48. See [CS99].

Though we cannot know the �nal status of the question of which packings are

best in general, we feel relatively at ease proposing the following hypothesis:

Hypothesis 12* The laminated lattice K12 is the best packing in R12.

The History of the Laminated Lattices.

Of course the sphere packings determined by the laminated lattices in dimen-

sions up to 3 have long been familiar, even to greengrocers. Several proofs of the

optimality of the hexagonal lattice in the 2-dimensional case were o�ered in the

nineteenth century. They are now superceded by that of Fejes Toth, which also

shows that this lattice is optimal in many other senses.

The 3-dimensional laminated lattice in the face-centered cubic lattice. The ques-

tion of proving its optimality is attributed to Kepler since he mentioned it in his

little book "The Six-Fingered Snowake" of 1613. In 1831 Gauss established (in a

book review!) the optimality among 3-dimensional lattices, and the work of Hales on

which we have already commented seems at last to have established this optimality

among all 3-dimensional packings.

The St. Petersburg school of mathematicians founded by Chebyshev has had a

great inuence on this subject. For example, the laminated lattices in dimensions

up to 9 were discovered and conjectured to be optimal by Khorkine and Zolotarev

before 1873, and they and Voronoi established their optimality among lattices in

dimensions up to 5. The analogous proof for dimensions 6,7 and 8 was given by

Blichfeldt in the 20s and later simpli�ed by Mordell and Vetchinkin. This is still the

boundary of our positive knowledge in these matters, although in 1946 Chaundy

gave a purported proof that two particular lattices were the optimal lattices in

dimensions 9 and 10.

What Chaundy e�ectively did was to establish that the two lattices he discussed

were in fact the 9- and 10-dimensional laminated lattices. In 1982, Conway and
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Sloane gave the formal de�nition of this notion of laminated lattice, and worked

out all such lattices in dimensions up to 25, and the densities of all laminated

lattices in dimensions up to 48. It would be incredibly di�cult to continue the

sequence beyond this dimension, and in any case there is little point in doing so,

because denser lattices than the laminated ones are now known in the dimensions

from 30 upwards.

Denser Packings than the Laminated ones.

The conjecturally "best" packings described in the �rst portion of this paper

have the same densities as the those derived from the laminated lattices (of which

they are generalizations) in all dimensions up to 9. The smallest dimension in which

the laminated lattices can be beaten is 10, where they are beaten by Best's packing.

This is also the smallest dimension in which a non-lattice packing appears to be

optimal.

In dimensions 11,12,13 the Kappa sequence gives the best known lattices, but

there are better non-lattice packings in dimensions 11 and 13, already known to

the �rst edition of Sphere Packings, Lattices and Groups [CS99]. In all dimensions

from 14 to 25 the laminated lattices (also in that book) still hold the record among

lattice packings.

However, there are new, non-lattice, packings in dimensions 18 (Bierbrauer and

Edel, 1998), 20 (Vardy, 1995), and 22 (Conway and Sloane, 1996). The nicest of

these is the 20-dimensional packing found by Alexander Vardy in 1995. This came

as a great surprise since we had considered improvements near 24 dimensions very

unlikely because the Leech lattice is so spectacularly e�cient there. It uses what

Conway and Sloane called "the Antipode Construction", analogous to the better

known "Anticode Construction" of coding theory.

We obtain Vardy's 20-dimensional packing as follows. In the Leech lattice,

take all the vectors that, projected onto the 4-space spanned by the �rst tetrad of

coordinates, fall onto one of the vertices of a regular tetrahedron of the shortest

possible edge-length. Then project these vectors instead onto the orthogonally

complementary 20-space. The result is not a lattice, because the sum of two vectors

of the tetrahedron is not another, but it is in fact the union of four sublattices that

project onto the di�erent vertices of the tetrahedron. Conway and Sloane �nd its

group, which is indeed obtained by projecting all the symmetries of the Leech lattice

that �x the tetrahedron (as a whole) onto its orthogonal space.

They also discussed the analogous packing in 22 dimensions, where the tetra-

hedron in 4-space is replaced by an equilateral triangle in 2-space. It has similar

properties; in particular its group is obtained from that of the Leech lattice by

a rule like the one above. More recently, by a di�erent method, Bierbrauer and

Edel have found a non-lattice packing that beats the laminated lattice of dimension

18|this being the only other improvement on the �rst edition of Sphere Packings,

Lattices and Groups in 25 dimensions or below. There have also been particular

improvements on the upper bounds in many dimensions beyond 25, for which we

refer the reader to the third edition of that book.
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\Stop Press" news about lower bounds

The only new \�nal" result is the value of the optimal density in the 3-dimensional

case. However, Henry Cohn and Noam Elkies have made some equally exciting new

progress, which might soon yield the answers in 8 and 24 dimensions [Co00].

Some time ago, Odlyzko, Bannai and Sloane [OdSl79],[BaSl81] solved the kiss-

ing number problem in those dimensions, using an analytic method developed by

Levenshtein [Le79]. (The only other dimensions for which that problem was solved

previously were 0,1,2,3.) Cohn and Elkies' method gives a lower bound that de-

pends on a certain function whose best value is to be determined. This function

will be a linear combination of certain \radial Fourier eigenfunctions" g1, g3, : : : ,

and Cohn and Elkies' new bounds are achieved by �nding the best combinations

of the �rst 2n of these. It appears that they improve on the Rogers bound in all

dimensions above 2 (where the Rogers bound is the exact answer). It also seems

that in the dimensions 8 and 24 the appropriate linear combination of all the gn will

establish the optimality of the E8 lattice and the Leech lattice, since the bounds

obtained by taking larger and larger �nite numbers of the gn appear to be tending

to the correct limits.

If so, all that will be required to establish these two answers will be the \div-

ination" of the function corresponding to the correct in�nite linear combination of

the gn, and the veri�cation that it satis�es certain inequalities. So we might soon

have a solution in 8 and 24 dimensions that is very much shorter than the one in 3

dimensions! But since this depends on somebody's having a bright idea it is hard

to know just how long it will take.

All our other so-called \progress" is at the level of conjecture. But we can

now say that we think we know all the \best" packings in dimensions 1-10, and

although this is merely a conjectural answer to an unde�ned question, this is a kind

of \knowledge" that we didn't previously have!
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