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Dodecafoam and substitution tilings

That is, we rule out certain crazy pathologies.
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We discuss substitution tilings, certain hierarchical, highly structured tilings in the plane or more

general geometric spaces. We use \Dodecafoam" as an artful, appealing example.

Dept. of Mathematics University of Arkansas Fayetteville, AR 72701

Substitution tilings are a class of highly structured hierarchical tilings in a geometric space; in essence,

they are tilings generated by replacement rules and are geometric realizations of regular languages (a general,

theoretical discussion of this can be found in [3]). We will begin with a quick formal discussion and examples,

then give general algorithms for producing these tilings; �nally we will discuss the dodecafoam example.

We will assume we are working in , -dimensional Euclidean space (though we can generalize all these

de�nitions); = ( ) is the set of isometries acting on . A is some compact set of points that

is the closure of its interior. Given a set of tiles, a is a

collection = of tiles in such that (1) for all , and have disjoint interiors and

(2) = . A is a con�guration with support ; a is any collection of tilings.

A is de�ned by three components: a set of tiles , an expansion constant acting on by

( ) = , and a map taking each tile to a con�guration of tiles in with support . Now in

particular, for each , = for some collection of tiles in .

So for example, in �gure 1, on the upper left, we see that a pentagon can be divided into three kinds of

tiles in : a pentagon, , and two isoceles triangles and . If we take as our ination constant the

famous golden ratio, = = (1 + 5), and de�ne = , = we can then let our substitutions
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It is very important not to confuse this with . A set of tiles is if every possible tiling by tiles in is

non-periodic. Subsitution species indirectly provide one of the main methods of producing aperiodic sets of tiles, though. See

[4] or [8] for detailed discussion.

be: ( ) = , and ( ) = ; we let ( ) be a con�guration with �ve congruent copies of , �ve

of and one of , as pictured (for brevity, we will rely on the �gure to specify the eleven isometries used

to get these congruent copies; note that these isometries are critical to the construction). Similarly, the

con�gurations ( ), ( ) are illustrated.

For any , we de�ne ( ) in the obvious way; formally, this works out to be: ( ) = ( ).

For any con�guration we can de�ne ( ) = ( )

We can thus iterate this substitution on tiles and de�ne ( ) = ( ( )), and so on. Any con�guration

of the form ( ), , we will call an .

And now we can de�ne:

Fixing our tiles , expansion constant and rules , a tiling is a if and only if for

every bounded con�guration , there exist , and with ( ). That is, a

tiling is a substitution tiling if in any bounded region it \looks" like part of an -level supertile. Let �( )

be the species of all such substitution tilings based on , and . It is non-trivial to show that �( ) is

non-empty, or to describe its structure in any detail; this is seen in [3], [5], [8] and elsewhere.

So a portion of a substitution tiling derived from the pentagonal substitution given above is illustrated

at right in �gure 1

A few facts may be worth noting: A tiling is said to be if some �xed-point free isometry

satis�es = (thus the familiar tiling of by a lattice of squares is periodic) and otherwise.

In some generic, but ill-de�ned sense, most substitution tilings consist of only non-periodic tilings. For

any particular example this is shown using the following idea:

A subsitution species �( ) has if and only if the map : �( ) �( ) is
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The converse is only partially understood; [11]

one-to-one. E�ectively this means that any tiling in the species has a uniquely de�ned hierarchy of supertiles;

that is, that each tile in any in the species is in a unique nested collection supertiles, one of each level.

It is a well-known theorem [8] that if a substitution species has unique decomposition then it is non-

periodic; and as a practical point, this is usually how non-periodicity is shown (for a very typical proof, see

[6] or [7]). The example of �gure 1 has unique decomposition and is thus non-periodic.

Interestingly, if a substitution species have unique decomposition, then it contains uncountably many

tilings.

Finally, though substitution tilings are not usually periodic, if certain pathological cases are ruled out,

they are : that is, given any species �( ) satisfying very mild conditions, given any �( )

and any bounded con�guration , there is an 0 such that in con�guration of radius , in

tiling in �( ), there is an image . So in a very strong sense, tilings in a given substitution species

all look pretty much the same, and look the same everywhere. This is certainly believable after looking at a

few examples!

In �gure 2 we see several substitution tilings in the Euclidean plane. The variety of structure is striking.

And we are not really limited by the setting set forth above; in �gure 3 we have an example of a substitution

tiling with quite a di�erent kind of structure. Here the replacement transformations are projective, not

Euclidean. Even in the Euclidean case there are many open questions: for example, even in that restricted

setting it is still not known whether there are uncountably many combinatorially distinct substitution tilings.

The above discussion points to a pretty concrete way to generate substitution tilings. We will write

our code in . The following framework is suitable for a range of applications, from symbolic
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A symbolic dynamics example:

f @@ a, b, f[a, b, ] f /@ a, b, f[a], f[b], Join

# & (# 2 +2)&[3] 11 Nest[f, a, n]

f f f a

In , yields ; yields . joins lists

into one list; an expression including and ending in is a pure function, hence yields . gives

[ [ [ ]]]

SubIt[object0_,depth_,subrule_,getmotif_,showmotif_]:=

showmotif[getmotif /@

Nest[(Join @@ subrule /@ #)&, object0 ,depth]]

object

position, type

object0 depth

subrule object object

getmotif object

showmotif getmotif

SubIt SubIt

subrule

depth getmotif

showmotif

SubIt

dynamics to dodecafoam. We use the following function:

The substitution acts on s, which can be any data structure we please. For the tiling examples, these

will be of the form .

We begin with an initial object, and iterate times. The rules for the substitution are given

by a function that takes an as input and returns a list of s. I prefer to divide the

�nal display into two functions; the �rst, takes as input an and puts this into some

intermediate form. The second, takes a list of outputs from and produces the �nal

product.

E�ectively, then, given the input just described, does the following: at each step, keeps a

list of objects; the function is applied to each object in the list, each producing a list of objects;

these lists are then combined, and the process is iterated times. Then is applied to each

object in this list and is applied to this as a whole. Let us give two examples.

Here is a simple string replacement operation; we have an alphabet

of two letters, 0 and 1; our \tilings" are strings of 0's and 1's. At each step of the substitution we replace

any occurence of 0 with 01 and any occurence of 1 with 10. Thus, 0 01 0110 01101001

0110100110010110 . The commands we de�ne to use in are:
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letterule["0"]= "0","1" ;

letterule["1"]= "1","0" ;

lettermotif[letter_]:=letter

showletter[letterlist_]:=StringJoin @@ letterlist

SubIt["0", 4, letterule, lettermotif, showletter]

X,Y X aX bY

X cX dY a b c d

objects position, type position

S SS S Ident

tilerule[ pos_,X ]:= S . pos . SS . a, X , S . pos . SS . b, Y ;

tilerule[ pos_,Y ]:= S . pos . SS . c, X , S . pos . SS . d, Y ;

tilemotif[ pos ,type ]

showtiles[graphicslist ]

Evaluating

we get as output:

For a tiling example in , things are somewhat more complex; We will just sketch

a few of the basic points:

Suppose our tiles are to be called , our ination constant is , and we have that ( ) = ,

( ) = where . We will represent our points in as ( + 1)-dimensional homogeneous

column vectors; will consist of ( + 1) ( + 1) matrices.

Then our will be of the form ; where is an ( +1) ( +1) matrix.

Let be the ( +1) ( +1) matrix decribing ination by , let be , and let be the ( +1) ( +1)

identity matrix. We can de�ne:

then returns a list of appropriate graphics primitives that depend of the type

of tile and its position, and takes a list of lists of graphics primitives, combines

these into one list and displays the result, perhaps after additional formatting. We thus evaluate something

like:
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SubIt[ Ident,X , 6, tilerule, tilemotif, showtile]

We now discuss a favorite example, Dodecafoam. The author has known the example partially since about

1988 and completely since 1993. This particular substitution tiling is closely related to a three dimensional

analogue of the Penrose tiles; one version is described in [10]; these tiles in turn appear to be related to a

range of physically occuring \quasicrystals" [9]. Other related substitution species are given in [1].

I was led to the construction in part by thinking about generalizations of the famous Koch snowake.

David's fractal stellated dodecahedron [2], was thought of along these lines and can be found within this

construction.

And so let us turn to the construction (The precise details of the construction are relegated the

appendix. )

We begin with a regular dodecahedron with edges of length where = . We \facet" ; that

is, we divide using twelve planes cutting through its interior as pictured in �gure 4. This divides the

dodecahedron into several di�erent types of cells.

Before describing the cells, let us de�ne triangles = and = and pentagons = .

Note that the planes used to facet cut each other into one copy of , and �ve copies each of , , ,

and and ten of (�gure 4). The cells in the faceted will have faces that are of these types.

In the very center of our faceted lies a small dodecahedron of with faces all congruent to (�gure 5,

a). We'll call this dodecahedron ; note that = .

On each face of we see a pentagonal pyramid, or \small hat" ; these have one face congruent to

and �ve faces congruent to . and the twelve small hats together form a small stellated dodecahedron

(�gure 5, b & c).

Between neighboring hats, we next see a total of thirty \small wedges" . These wedges are tetrahedra
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with two copies each of and as faces. All together, the dodecahedron , the twelve small hats ,

and the thirty small wedges form a great dodecahedron (�gure 5, d & e).

Next we see twenty \spikes" ; these spikes �t into the triangular depressions of the great dodecadron to

form a great stellated dodecahedron. These spikes are trigonal dipyramids| that is, two triangular pyramids

stuck together. The inner pyramids have faces congruent to ; the outer pyramids have faces congruent to

. The convex hull of this great stellated dodecahedron is our original dodecahedron ; that is, the vertices

of coincide with the tips of the spikes (�gure 5, f & g).

We now �ll in the remaining parts of . Between the spikes we �ll in thirty strangely shaped \chocks"

; the faces of each chock are two copies of and six copies of (�gure 5, h). As it turns out, we can

replace each chock with a copy of the dodecahedron , four small hats and a wedge (�gure 6, a); and so

we will eventually dispose of the chock entirely.

Finally, we can �ll in the star shaped holes that remain (�gure 5, i) with twelve \large hats" :=

and sixty \large wedges" := .

Thus the twelve planes cutting through the interior of divide into 165 cells| one small dodecahedron,

twelve small hats, thirty small wedges, twenty spikes, thirty chocks, sixty large wedges and twelve large hats.

Or, replacing chocks with other pieces, the large dodecahedron is divided into 345 cells! But this is not

nearly as bad as it sounds| there is a tremendous amount of symmetry to be taken advantage of.

These cells| dodecahedra, hats, wedges, spikes and chocks| will be the basic pieces of the substitution

tiling. It now remains to decide on the most \natural" way to subdivide these cells. The basic idea is to

use the faceting of to �nd \natural" subdivisions| that is, within the 165 cells described above, look for

clusters that are enlarged versions of our basic cells.

It is unclear to me, frankly, whether the particular choices made are art or science. But this hueristic idea

works again and again for similar constructions based on other polytopes. At any rate, centered within the

faceted we can �nd a copy of := (�gure 6,b); a copy of := ; and a copy of := .

Thus, after two inations by , we can replace our small hats ; after three inations we can replace our

7
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small wedges; after one ination, our spikes, and after three inations we can replace our small dodecahedra.

We thus set our ination factor to be and de�ne the substitution as:

which is then replaced with a collection of cells.

which is then replaced with a collection of cells.

which is then replaced with a collection of cells.

:= := which is then replaced with a collection of cells.

We then iterate the substitution, using something like .

In fact, though, the nice images of dodecafoam are not quite strictly of the substitution tiling described

above. There is really only one change| we never substitute in for dodecahedra. The last chain of substi-

tutions is actually:

And we draw only the dodecahedral cells; all the other cells are simply left out at the �nal step. So, in

�gure 7, the hat, wedge, spike and chock are illustrated after a few iterations of the substitution.

I had been making hand-drawn (!) pictures and paper models of dodecafoam for a few years when I �nally

had an opportunity to make some high quality computer renderings. The transformation rules, given as 4 4

matrices acting on homogeneous coordinates, were �rst assembled from basic operations, as described below,

in . Dan Krech, then an apprentice at the Geometry Center at the University of Minnesota,

wrote a program to iterate the substitution| that is, to repeatedly multiply all these transforms together

(this is faster than using the routine described above). The images were then assembled in

(available from the Geometry Center), which took as input simply a list of the transforms acting on the

motif, a dodecahedron. Since the transforms were given separately from the motif, any object

could be used as the motif; some amusing images were made with human heads in place of the dodecahedra.

Lights, colors and materials were chosen in . Finally, for the four images in this article, the �les
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Appendix: Details of the construction
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were passed onto for �nal rendering.

The images in �gures 8, 10, 11, and 9, di�er in the choice of cells at the begining of the process; thus we

�ll a stellated dodecahedron, great dodecahedron, great stellated dodecahedron and dodecahedron are �lled

with dodecafoam; these solids are nested, exactly as in �gure 5.

We use the following transformations as building blocks:

First de�ne as the rotations about the and axes by 180 degrees, and as reections

along the , and axes. So, for example ( ) = ( ) and ( ) = ( ). De�ne as

the clockwise rotation by 120 degrees about the vector (1 1 1); thus ( ) = ( ). De�ne as the

clockwise rotation by 72 degrees about the vector (1 0 ); thus, considering a row vector , ( ) is

given by

( ) =
1

2

1

1

1

Note that these rotations, individually, generate cyclic groups of order 2, 3 or 5. So for example: =

= . For further convenience we write: for = .

We have:

The vertices of are: ( 1 0 ) and ( )

The vertices of the small stellated dodecahedron are: ( 1 0 ).

The vertices of are of course ( 0 ) ( )

Choosing particular cells to represent , and , we have that the vertices of are

( ) and (1 0 ).

The vertices of are ( 1 0 ), (0 1).

The vertices of are (1 0 ) ( ) and ( ).
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( + ( 0 )),

( + ( 0 ))
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= + (0 0 2 )

10



�n
E n

11

19

147

53

34

20

Computers and Graphics

Annals of Mathematics

Proceedings of the Nato Advanced Studies Institute

\Foams, Emulsions and Cellular Materials"

European Journal of Combinatorics

European Journal of Combinatorics

Tilings and patterns

Physical Review Letters

Physical Review B

Discrete Com-

putional Geometry

[2] H. David, Two fractals based on Keplerian solids, , (1995) 885-888.

[3] C. Goodman-Strauss, Addressing and substitution tilings, in preparation.

[4] C. Goodman-Strauss, Matching rules and substitution tilings, (1998), 181-223.

[5] C. Goodman-Strauss, Aperiodic hierarchical tilings, to appear in the

, Kluwer.

[6] C. Goodman-Strauss, An aperiodic pair of tiles in for all 3, to appear in .

[7] C. Goodman-Strauss, A small aperiodic set of planar tiles, to appear in .

[8] B. Gr�unbaum and G.C. Shepherd, , W.H. Freeman and Co. (1989).

[9] D. Levine and P.J. Steinhardt, Quasicrystals: A new class of ordered structures, (1984), 2477-80.

[10] J.E.S. Socolar and P.J. Steinhardt, Quasicrystals II: unit cell con�gurations, (1986), 617-647.

[11] B. Solomyak, Non-periodicity implies unique composition for self-similar translationally-�nite tilings,

(1998), 265-279



p0 p1

h0
h1

w0 

a) b)

Figure 1: A pentagonal substitution tiling
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Figure 2: Several substitution tilings

Figure 3: A projective substitution tiling
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Figure 4: Faceting

Figure 5: Examining the faceted
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Figure 6: Substitutions

15



Figure 7: Filling the cells with dodecahedra

Figure 8: Dodecafoam �lling the stellated dodecahedron
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Figure 9: Dodecafoam �lling a dodecahedron

Figure 10: Dodecafoam �lling the great dodecahedron
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Figure 11: Dodecafoam �lling the great stellated dodecahedron
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