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Abstract

Following Mathieu [Ma], Motegi [Mo] and others, we consider the
class of possible composite twisted unknots as well as pairs of com-
posite knots related by twisting. At most one composite knot can
arise from a particular V -twisting of an unknot; moreover a twisting
of the unknot cannot be composite if we have applied more than a
single full twist. A pair of composite knots can be related through at
most one full twist for a particular V -twisting, or one summand was
una�ected by the twist, or the knots were the right and left handed
granny knots. Finally a conjectured characterization of all composite
twisted unknots that do arise is given.

Figure 1: A twisting of a knot

Following Mathieu [Ma], Motegi [Mo] and others, we consider the class of
possible composite twisted unknots. In essence, a twisting of a given knot K
is constructed by pulling several strands away from the knot, momentarily
cutting them, giving them a few full twists, and rejoining the strands to each
other as they were before, as illustrated in �gure 1. A knot is composite if it
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can be described as two simpler knots spliced together. Motegi conjectured,
and we show in Section 3, that a twisting of the unknot cannot be composite
if we have given the unknot more than a single twist. In Section 2, we also
describe all known examples of composite knots that do arise from a single
twist of the unknot, and conjecture the list is complete.

But once we have chosen our strands to twist, can we obtain two com-
posite twisted unknots, the �rst from twisting once one way, the other from
twisting once in the other direction? In Section 4, we show that a pair of
composite knots can be related through at most a single full twist, or the
twist a�ected only one summand, or that the knots were the right and left
handed granny knots, which cannot be twisted unknots by [MY]. The pair
of composite knots arising from the same twisting of an unknot would be
twistings of one another, related through two full twists, an impossibility,
since the only such knots cannot be twisted unknots. Finally we show ev-
ery composite knot is related to an in�nite number of other composite knots
through some full twist.

Let us formalize our terms. Let K be a knot in the interior of a standardly
embedded solid torus V in S3 (�gure 1). Let �; � � @V be the standard
longitude, meridian of V in S3. For a simple closed curve � � @V such
that [�] = [�] + �[�] in H1(@V ; Z), let V (�) = V (�) = V [ (solid torus
such that meridian lies on �) �= S3. We assume that the minimal geometric
intersection of K with a meridinal disk of V is at least two. K� = K � V (�)
then depends on K in V and � 2 Z. Generally we assume � > 0, by our
choice of orientation of �. If K is unknotted in V (0) �= S3, we call K�

a twisted unknot. If K is a composite knot in V (0) we call K� a twisted
composite knot. In general we consider K� to be a (�; V )-twisting of K. We
occasionally refer to a V -twisting, a (�; V )-twisting for any �. Mathieu [Ma]
described this twisting operation.

A knot K is composite if a splitting sphere can separate S3 into balls each
containing a single, knotted arc of K, a knot summand. In our analysis of
composite twisted unknots that arise when � = 1, there are two cases: either
there is a sphere splitting the knot summands that is punctured twice by @V
or every splitting sphere must be punctured at least four times. With The-
orem 2.2 we classify all composite twisted unknots arising from the former.
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We conjecture that the latter cannot occur.

Motegi [Mo] recently conjectured that each presentation of K in V gives
rise to at most one composite twisted unknot and that this K� arises from
a single twist of K. In [Mo] Motegi proves any such K� has � � 5; in [T2],
Teragaito recently proved that any such K� has � � 2. In Theorem 3.1 we
note that indeed � = 1 for such K�.

In Theorem 4.1 we prove that, but for the single exception of the right and
left handed granny knots, (3; 2)#(3; 2) and �(3; 2)#� (3; 2), given in [HMo],
two composite knots can di�er by at most one non-trivial twist. (Clearly
a twisting that a�ects only one summand gives rise to another composite
knot.) With the results of section 3 this proves Motegi's conjecture.

Very recently, Hayashi and Motegi [HMo] independently proved a theorem
similar to Theorem 3.1, with somewhat di�erent techniques than those used
here, and proved a weaker version of Theorem 4.1, namely that a (� � 3; V )-
twisting of a composite knot cannot be composite. Miyazaki and Yasuhara
give a su�cient condition for a knot's not being a twisted unknot in [MY]
and produce many examples of composite knots that meet this condition.

The techniques of Section 2 are explicit, and are independent of those of
Sections 3 and 4. Our proofs of Theorems 3.1 and 4.1 will rely heavily on the
techniques developed in [GL1] and expanded upon in [GL2]. We will assume
familiarity with those papers. Loosely speaking, these techniques apply to
punctured low genus surfaces, properly embedded in a manifold with torus
boundary. If the conditions are right, the techniques produce a negative
result, that the surfaces could not have been embedded as desired. Although
the lemmas and theorems in [GL1], [GL2], [CGLS] etc. arise from the graphs
of intersection of two punctured spheres, we can carefully adapt them to the
graphs of intersection of other punctured surfaces. For the proof of Theorem
4.1 we must also introduce loop types to produce ring graphs which give rise
to the exceptional case of the granny knots related by 2-twisting.

The author gratefully acknowledges John Luecke's patient and generous
guidance.
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1 The Geometric Setting

We will �rst examine a punctured disk arising from the disk bounding an
unknot K in V (0), and a punctured sphere derived from a splitting two-
sphere for composite K in V (�). The techniques of [GL1] and [GL2] describe
the graphs of intersection of such surfaces, the complex formed by their union,
and the nature of any manifold that might contain such a complex. As we
will see in Section 3, if � � 2, such a complex cannot be correctly placed in
S3, for a contradiction.

Take V in V (0) = S3, the complement of a small open neighborhood of an
unknot H. Thus for any integer �, V (�) = H(1=�), the 1=� Dehn-surgery
on H.

Let D� be an embedded disk in V (0) with @D� = K, such that D�

intersects H transversally and minimally. LetD = D��int(N(H)) = D�\V ,
a punctured disk.

Assume K� is composite. Then let A� be an embedded two-sphere in
V (�) separatingK into two knotted arcs, such that A� intersects H transver-
sally and minimally . Let A = A��int(N(H)) = A�\V , a punctured sphere.
We can choose A� so that A and D meet minimally and transversally in V .

There are three kinds of curve of intersection of A and D in V : arcs with
both ends on @V ; simple closed curves of intersection; and either two arcs
�1; �2 � A \ D with one end on @V , the other end in A \ K, or one arc
�0 � A \D with both ends in A \K.

Note that a simple closed curve of intersection s cannot bound a disk
in either A or D. If s bounds a disk in both A and D then A and D do
not intersect minimally. If s bounds a disk in A but not D, then D does
not intersect H minimally. If s bounds a disk in D but not A, A does not
intersect D or H minimally.

We will consider the graphs of only the arcs of intersection of A and D
and will take note of the simple closed curves of intersection only in our �nal
geometric arguments. Let GA, [GD] be this graph on A,[D]. A pair of these
graphs is depicted in �gure 2. Their geometric interpretation may be clearer
after examining the constructions in Section 2.
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Figure 3: A fat vertex with � = 1 and one with � = 3

We note that on @V , the components of @A, [@D] are parallel and thus
share the well-de�ned slope 1=�, [0]. Moreover, each component of @A meets
each component of @D in exactly � points. Thus GA and GD can be de-
scribed by the nomenclature of pg. 386-7 [GL1].

In particular, GA, say, consists of \fat vertices"{ the components of A \
@V { that are numbered and carry an orientation shown as the shading of the
vertices; of edges running between fat vertices{ the components of A \ D;
and labels at each fat vertex corresponding to the fat vertices of D. For our
graphs there are also the exceptional edges incident to K \A, to wit, either
�1 and �2, or �0. We stress that K � @D is not referred to as a fat vertex.
Note that since D and A are orientable surfaces properly embedded in an
orientable manifold, GD and GA satisfy the parity rule, namely that edges
connecting vertices of opposite orientation are incident to labels of the same
orientation, and vice versa. As we will point out in Lemma 3.2 below, we
can assume there are no boundary parallel arcs in either graph.

In sections 3 and 4 we will be needing � > 1 and note that components
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of @D and @A will then meet more than once. Accordingly we adopt the
conventions of [GL2] with regard to the multiplicity of labels. In particular,
a particular label occurs with multiplicity � about a fat vertex. Given a set
of labels with order c, there are �c representatives of this set at each vertex
(�gure 3).

In general we will refer loosely to graphs of this sort, with the accompa-
nying nomenclature, as labeled graphs of intersection.

Faces of GA, [GD] that contain no simple closed curves provide relations
in the �rst homology of V (0), [V (�)] given by generators in @A and D, [@D
and A], as illustrated in �gure 4 below. Recall that no disk face of either
graph contains a simple closed curve of intersection of A and D. For � � 2,
combinatorial analysis based on the techniques of [GL2] provides disk faces
that imply torsion in the appropriate �rst homology. [L] gives an expository
discussion of these graphs and the techniques used in [GL1], [GL2].

1

2 4
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C
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A

A
BC

D

(AB)(AB)(DC)=1

∂V

Figure 4: How the graphs provide relations in the homology

6



2 Composite Twisted Unknots

We will see in Section 3 that any twisted unknot K� with � > 1 cannot
be composite. Here we give a categorization of composite twisted unknots
that do in fact arise and conjecture this is complete. Generally, a composite
twisted unknot K�, � = 1, can be characterized by the graphs of intersection
GA and GD as constructed above. Recall that A is the portion in V of a
separating sphere for K1 in V (1), and D � V arises from the disk bounded
by the unknot K in V (0).

All published examples of composite twisted unknots have a separating
sphere punctured twice by @V , that is, A divides V into two solid tori, each
containing a component of the composite knot. We completely categorize
composite twisted unknots with such a separating sphere.

Interestingly, there are pairs of graphs of intersection that might serve as
potentialGA andGD, such thatGA has more than four boundary components
on @V , and such that neither graph has obstructions that can be detected by
the combinatorics of [GL1] and [GL2]. However, for the time being, all known
examples of these graphs have more subtle obstructions, either to properly
embedding the induced complex A [ D@V in S3, or to producing two non-
trivial summands for the twisted unknot K = @D � V (1). Examples of such
graphs are given in Appendix A.

2.1 A Class of Composite Twisted Unknots

An arc  with endpoints on a surface F in a manifold M is called unknotted
(with respect to F ) if there is an ambient isotopy of M carrying  to F
leaving  \ F �xed.

A torus one-bridge knot can be described as an arc on the boundary of a
standardly embedded solid torus, union an unknotted arc in the solid torus.

Let k be a torus one-bridge knot with presentation on and in a standardly
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Figure 5: A presentation of a torus one-bridge knot k

A

A1

Figure 6: A presentation of �k1
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embedded solid torus V 0 in S3 as illustrated in �gure 5. In the �rst case take
 to be any arc of k on @V 0, in the second let  be the single unknotted arc
of k in the interior of V 0. Let �k1 be the reection of a (1; V 0)-twisting of k;
we will see that K=k#(�k1) is a composite twisted unknot.

Note that the presentation of k can be isotoped so that  lies on a merid-
inal disk of V 0. Thus we can �nd an annulus A � @V 0 parallel to a meridian
of V 0 such that  can be isotoped to A in V 0, holding k\@V 0 �xed, and such
that for A0 = @V 0�A, the components of k \A0 are simply arcs connecting
opposite boundary components of A where each arc misses some meridian of
S3 � V 0. Note then that A is common to our presentations of both k and k1
(and indeed, k� for all V 0-twistings).

∂V V

A A*

Figure 7: Joining the presentations of k and �k1 to obtain A [ @V

We demonstrate that K = k#(�k1) is a twisted unknot, by �rst joining
the presentations of k and �k1 along A as shown in �gure 7. Embed A on a
two-sphere A� in S3 and take V to be a solid torus standardly embedded in
S3 such that V \ A� = A. In the illustrations of A [ @V , V has been drawn
on the outside @V . We consider the boundary of V to be the union of the
embeddings of A0 and A1, separated by @A. Thus there are two embeddings
of @V 0 in A[@V , with associated presentations for k and �k1, to wit, A[A0
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and A [ A1.

D

K=- k1#k

A

∂V

Figure 8: Isotoping the presentations of k and �k1 to obtain K

Then by a slight isotopy of the presentations of k, �k1 up o� A [ A0,
A [ A1, resp., we see that in fact A� separates K = k#(�k1), as in �gure
8. This isotopy of the presentations yields an embedded, punctured disk D
with one boundary component K and the other boundary components (1; 1)-
curves on the boundary of V . If we cap o� V with these curves we produce
an embedded disk D in V (0), bounded by K in V . And so K = k#(�k1) is
a twisted unknot in V (1) for all torus one-bridge knots k.

1 77 1A B

GA GD

1

3
2

6
5

4

7

Figure 9: The graphs of intersection for our K = k#(�k1)

Note that GA is simply the pattern of arcs of k on A, and that we can
easily read o� the edges of GD in order. The two faces of GD each present an
isotopy from one of the summands of our twisted unknot to (A [ @V ) \D.
We have sketched a proof of:
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Lemma 2.1 If k is a torus one-bridge knot with presentation in and on a
solid torus V , then K = k# � k1 is a composite twisted unknot, where �k1
is the reection of a (1,V )-twisting of k. Moreover, GA has two vertices and
GD has one component as constructed above.

Note that this construction accounts for all pairs of connected GD, two-
verticed GA. As shown in Appendix B, most published examples of composite
twisted unknots can be presented in this fashion, with the sole exception
of the examples given in [T1]. These fall into a slightly broader category,
absorbed into Theorem 2.2.

2.2 All Composite Twisted Unknots with j@Aj = 2

We de�ne a restricted band sum of a collection of torus 1-bridge knots with
disjoint presentations on and in a standardly embedded solid torus V 0 to be
a band sum of the knots such that the bands do not intersect each other or
the interior of V 0.

Theorem 2.2 If K is a composite twisted unknot with j@Aj = 2, � = 1,
then K in V (1) is of the form K = S(k)#� k1 , where

(i) k is a torus 1-bridge knot with presentation in and on a solid torus V 0;
(ii) �k1 is the reection of a (1; V 0)-twisting of k;
(iii) and S(k) is any restricted band sum with respect to V 0 of k with a
collection of disjoint (1; 1) and (0; 0) curves on @V 0.

Furthermore, all knots K = S(k)# � k1, as described, are indeed composite
twisted unknots.

Note that we can assume that curves on D that are inessential in @V 0

are essential in @V 0 � k. Any innermost inessential curve in @V 0 � k with
boundary on D \ @V 0 bounds a disk in V 0 that can be used to reduce D ;
similarly, any band sum to an innermost inessential curve in @V 0 � k can be
retracted.
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The following example, from Teragaito [T1], motivates this theorem. This
composite twisted unknot K is the sum of a (p; p + 1) torus knot and a
particular satellite of an arbitrary knot (see �gure 33 in Appendix B). This
second summand can also be seen as the restricted band sum of a (1; p) torus
knot and a (1; 1) curve.

We can parametrize the graphs by p. There is a region of p � 1 pairs of
alternating thick and thin arcs and one of p�2 thin arcs, and there are other
arcs as shown. The thick arcs are a presentation for the torus knots. Further
examples are given in Appendix B.

GA

1 1

3p3p

p-1 
pairs

p-2

band

Figure 10: A [ @V and GA for one of Teragaito's examples

Proof of Theorem 2.2 Each summand of K1 = K � V � V (1) is a band
sum of knots that are isotopic to unions of arcs of A\D on A and D\@V �A
on @V in V (1). This isotopy is simply a retraction of the outermost faces of
GD to the outermost arcs of GD, with bands between outermost components
of GD, just as illustrated in �gure 11.

Let V +, V � be the closures of the components of V �A, and let V +
1 , V �

1

be the closures of S3�V +, S3�V � (�gure 12). Note that V +, V �, V +
1 , and

V �
1 are each solid tori.

Let C+ be the collection of components of @V + \ D on @V +. Since
@D = K meets A exactly twice and never meets @V , these components will
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GD

K=∂D

band
isotopy

Figure 11: How a band sum arises from a multi-component GD

A

V+

V1
+ V-

V1
-

∂V

Figure 12: V +, V �, V +
1 , and V �

1

include exactly one arc k+ that may or may not meet @V and a possibly
vacuous collection of (0; 0) and parallel (p; q) curves on @V +. Similarly, let
C� be the collection of components of @V � \D on @V �.

On D we see that the elements of C+ [ C� are isotopic to the boundary
components of a neighborhood of GD as illustrated in �gure 13. Since j@Aj =
2, each C+

i 2 C+ is in one-to-one, onto correspondence with a C�
i 2 C� such

that each C+
i [ C�

i is a component of GD on D. (For the rest of this proof,
we include simple closed curves of intersection in A \D in GD, with no loss
of generality. Thus the C+

i [ C�
i may be simple closed curves that do not

meet @V ).
For each i, note C+

i \ C�
i is a collection of arcs on A, and, since � = 1,

(C+
i [C

�
i )� int(C

+
i \C

�
i ) is a collection of (1; 1) curves on @V , each of which

meets A exactly twice.
Thus, in V (1) each C�

i is the reection of the (1; V +
1 )-twisting of C+

i ; that
is, C�

i may be regarded as �(C�
i )1.

So the elements of C� are an arc k�, the reection of a (1; V +
1 )-twisting of

k+, and a possibly vacuous collection of (0; 0) and parallel �(p; p� q) curves
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isotopic to 
elements of C +

on G D 
isotopic to 
elements of C -

on G D  

Elements of 
C+  on ∂V1

+
Elements of 
C-  on ∂V1

- 

Figure 13: Elements of C+, and C�

on V �.
Now if GD has only one component, C+ = fk+g and C� = fk�g. The

summands of K � V (1) are isotopic to k+ and k� on opposite sides of A
and so K �= k+ [ k� �= k# � k1 where k [�k1] is the torus one-bridge knot
formed, with presentation in and on V +

1 [V �
1 ] from k+ [k�] by adding a little

unknotted arc (the bridge, which is removed when composing the summands)
outside of V + [V �]. Note that �k1 is the reection of a (1; V +

1 ) twisting of
k.

Suppose GD has more than one component; thus there are curves in
C+ [ C� � fk+; k1g that are essential on @V +

1 � k+ or @V �
1 � k�. Let  be

innermost on GD among all such curves. Suppose then, that  is in, say, C+,
and is a (p; q) 6= (0; 0) curve on @V +

1 . Let F be the face of GD incident to
 , and note that any other boundary components of F are (0; 0) curves in
V +
1 . By capping these o�, with a slight isotopy up o� of @V +

1 we �nd a disk
in V + bounded by  (a (q; p) curve on @V+). But then (q; p) must be (0; 1)
or (0; 0).

So C+ consists of k+, and (0; 0) and (1; 0) curves on @V +
1 ; the elements

of C�, in exact correspondence to those of C+, are then k�, and (0; 0) and
(1; 1) curves on @V �

1 (�gure 13).

Therefore the summands of K can be described: one is the band sum
with respect to V +

1 of a torus one bridge knot k with presentation on and
in V +

1 , with k \ @V +
1
�= k+, and a possibly vacuous collection of (0; 0) and

(1; 0) curves on @V +
1 ; the other summand is the band sum with respect to

V �
1 of �k1, the reection of a V +

1 twisting of k with �k1 \ @V
�
1
�= k�, and a

possibly vacuous collection of (0; 0) and (1; 1) curves on @V �
1 .
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We next show that any composite twisted unknot of this form can actually
be reduced to the form S(k)# � k1 as described in the hypothesis of the
theorem.

If GD has more than one component, GD has disk faces. By arguments
above, the boundary of such a disk face must be either a (1; 0) curve on @V +

1

or a (0; 0) curve on @V � essential in @V � � k�.

(1) Suppose there is a disk face F of GD bounding a (1; 0) curve in @V +
1 .

F is a meridinal disk of V + and all band sums in V + are actually contained in
the ball B = V +�intN(F ). All the curves of C+ to which k+ is bandsummed
are thus inessential in @B � k+, and can be retracted, since any innermost
such curve bounds a disk in @B missing D. Thus the summand of K in V +

could only be a torus one bridge knot, by abuse of notation denoted �k1.
The other summand can be described as the special band sum S(k), of the
form given in the statement of the theorem.

(2) Suppose that there is a disk face of GD bounding a (0; 0) curve in
@V �

1 , essential in @V �
1 � k�. Then the summand of K in V � is contained in

a ball, bounded by our disk face of GD and the disk bounded by the (0; 0)
curve in @V �

1 . Again, any band sum, with respect to a ball, of an arc to a
number of simply closed curves on the boundary of this ball, must be trivial.
So in this case, the summand of K in V � is a torus one bridge knot �k1, and
the other summand is a band sum with respect to V �

1 of k and a collection
of (1; (1� 1)=2) curves in @V �

1 and (0; 0) curves essential in @V �
1 � k�.

If this band sum is in V �, the sum is now in the form given in the
statement of the theorem.

(3)Assume then that the sum is in V +. That is, one summand of K is
the restricted band sum with respect to V +

1 of a torus one-bridge knot k with
presentation in and on V +

1 and a collection of (1; 0) and (0; 0) curves on @V +
1 ,

such that all (0; 0) curves are essential in @V +
1 � k. We will next isotope the

(1; 0) curves in V + � K so that the summand K is presented as the band
sum of k with (0; 0) curves, whence K will be in the form S(k)#� k1.
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(4) If k is band summed to (1; 0) curves, there is a face C of GD with
one boundary component a (1; 0) curve on @V +

1 , the others all (0; 0) curves
essential in @V +

1 � k. If this second class of boundary curve is vacant, then
this face is a meridinal disk of V + and the band sum is trivial as above.
Otherwise, we can use this face of GD to present any (1; 0) curve as the
band sum of (0; 0) curves. We simply slide any (1; 0) used in the band sum,
beginning with the closest, along the boundary of a neighborhood of C as
illustrated in �gure 14. And so any composite twisted unknot with � = 1
and j@Aj = 2 is of the form S(k)#� k1 as stated in the theorem.

C

Figure 14: Sliding curves

We now turn to the converse and for any knot of the form S(k)# � k1
produce a corresponding complex A[D[V . Let k be a torus one bridge knot
presented in and on a standardly embedded solid torus V 0, and let G0

D be
the graph presenting k#� k1 as a composite twisted unknot, as constructed
in Section 2.1. In this construction, let V 0 = V �

1 , and let �k1 be presented
in and on the solid torus V +

1 . There are (1; 1) and (0; 0) curves on @V �
1 that

miss k \ @V �
1 . These curves correspond to (1; 0) and (0; 0) curves on @V +

1

that miss �k1 \ @V
+
1 . Together, these curves have an induced placement on

@V [ A. We are free to cap o� the curves on @V +
1 with disks in V +; we can

form any band sum we please between the curves on @V �
1 and k in V �.

We construct D, a punctured disk in V , with one boundary component
any knot S(k)# � k1 and the other components (1; 1) or (0; 0) curves on
@V , by piecing together the caps in V + and bands in V �, and small interval
products above each element of C� in V �.

The graph GD is thus composed of G0
D banded with as many copies of

G0 (for (0; 0) summands) and G1 (for (1,1) summands) as we wanted curves
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to which to bandsum. Note that the placement of k on @V + completely
determines the number of vertices in each component of GD, the relative
parity of the vertices in each component, and the order of the labels of the
vertices in each component.

2

k+∪ k- a (1,0) ∈C+ and 

a (1,1) ∈C-
a (0,0) ∈C+ and 

a (0,0) ∈C-

K=∂D

Figure 15: Pieces of GD

Thus, with Theorem 3.1 and Corollary 4.2, Theorem 2.2 classi�es all
composite twisted unknots, up to the conditions of the following conjecture.
Teragaito makes this same conjecture in [T2].

Conjecture 2.3 If K is a composite twisted unknot then there is some sep-
arating sphere for K in V (1) that meets @V exactly twice.
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3 Not Composite Twisted Unknots

We set out to prove:

Theorem 3.1 If � � 2, then K� cannot be a composite, twisted unknot.

Recall the setting put forth in Section 1. For the proof of the theorem, we
will replace A with a punctured torus so that all of our arcs of intersection
have both ends on @V . Let T � be the torus formed by tubing A� along K
in one direction as pictured in �gure 16. That is, take N to be one of the
components of @N(K)�A� then T � = (A��int(N(K)))[N . T � is sometimes
known as a swallow/follow torus since it swallows one summand and follows
the other. Note T � \K = ;. Let T = T � \ V = (A� int(N(K))) [N .

A*
T*

N

Figure 16: Creating a \swallow/follow" torus

Recall the de�nition of the arcs �1,[�2] with one end on @V , the other
end in A\K as given in Section 1. The curves of intersection of T and D in
V are derived from those of A and D (�gure 17). The arcs not meeting K
and the simple closed curves of intersection are una�ected by the transition.
However, we obtain either an arc � running between the ends of the �i on
@V , derived from �1 and �2, or a simple closed curve �0, derived from �0.
Figure 17 below illustrates this �rst case for a graph with � = 1.

If � arises, let �0 = ; and note that by our choice of N we determine
which of the two outside faces of GD will be closed o� by � during this
construction.
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If �0 arises, take � = ; and note that if �0 bounds a disk in D, then A
could not have separated K = @D into non-trivial summands. Furthermore,
by construction, �0 must be non-separating on T .
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Figure 17: Constructing the new graphs of intersection

Again, we will consider the graphs of only the arcs of intersection of T
and D and will take note of the simple closed curves of intersection only
in the �nal geometric argument. We let GT , [GD] be this graph on T ,[D],
suppressing our previous de�nition of GD. Just as in Section 1, these graphs
are labeled graphs of intersection as described in [GL1].

However we note there are some di�erences in the nature of the surfaces
used here and those used in [GL1] and [GL2]: a component of @D is not in
@V , and T is not a punctured sphere. However, most of the combinatorical
arguments are local in nature and will not be a�ected, and many others will
su�er only a change in Euler characteristic. The core of the combinatorial
argument is induction within an inessential curve on one of our surfaces. In
order to insure that the curve separates and that the induction is �nite, the
induction must take place on D, working in away from K.
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Let T̂ , [D̂] refer to the (abstract) torus, [disk] formed by contracting each
fat vertex of GT , [GD] to a point. Finally, let p, q be the number of fat
vertices on GT , GD, respectively. Clearly q > 0, or D� would lie completely
within V and K would be both an unknot and a non-trivial composite knot
in V (�), a contradiction to the unique decomposition of knots. Similarly, if
p = 0, then A� would lie within V and K is both a non-trivial knot and an
unknot within V (0), a contradiction. Consequently, p � 2 since A� separates
V (�) and p is even.

For a graph G of properly embedded arcs on a punctured surface F we
call a component c of F -G a one-sided face if c is a disk bounded by a single
arc of G and some arc in @F .

Lemma 3.2 By suitable choice of N in the construction of T, we can assume
there are no one-sided faces in GT or GD.

Proof Suppose there were such a face c on either T , or D. If � is not in
@c then if c lies on, say, T , c provides an isotopy of D in V (0) reducing the
number of intersections of D with H, contrary to our construction of D.

We are left with the possibility that c lies onD and is partially bounded by
�. Momentarily consider S, the punctured two-sphere, formed by abstractly
adding a disk to D along K. Then GD lies on S in a natural fashion. Unless
GD consists of only � and a single vertex, � can only bound at most one
one-sided face on S. By choice of N in the construction of T , we can arrange
that this one-sided face does not lie on D.

If GD does in fact consist only of � and a single vertex, then D is an
embedded annulus in V (�) with one boundary component K(�) a compos-
ite knot and the other a curve on @V , an unknotted solid torus, giving a
contradiction, for torus knots cannot be composite. 2

We move to the combinatorics developed in [GL1] and [GL2]. As men-
tioned in Section 1, we seek special disk faces in the graphs of intersection
that provide relations in the �rst homology of the complex formed by our
surfaces, the twisting torus and an appropriate choice of meridians in the
complement of the twisting torus. Scharlemann cycles are disk faces whose
corners all lie on the same label pair, at vertices of the same parity. They
thus provide a cyclic relator; this relator is non-trivial since we are assured
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that all faces have more than one corner, i.e. there are no one-sided faces. A
type is de�ned in [GL1] as a particular kind of relation; a disk face represents
a type if it relates the relation. If we �nd disk face representatives for all
types, [P] demonstrates torsion in the appropriate complex. In essence, we
seek all types on GT or a Scharlemann cycle on either GT or GD. For a lucid
expository discussion, see [L].

We take notation as in [GL1] and [GL2]. In particular recall the conven-
tions regarding the multiplicity of labels given before Lemma 2.5 [GL2], and
the de�nition of an x-web, given before Lemma 2.3 of [GL2]. See �gures 3
and 18 in Sections 1 and 4. We do assume that all vertices not belonging to
a given great x-web lie in a single component of the complement of the web.

Lemma 3.3 Take GT , GD as above. Let L be a subset of the labels on T,
with jLj � 2. Let � be a non-trivial L-type. Take �T=�(T̂ ) and let c=jC(t)j
for t a star representing � . Let there be r disk face representatives of � on
GT and s switch edges. Then r + s � (�c� 1)p+ �T .

Proof This is a simple restatement of Lemma 2.3.2 of [GL1]. Note only
the following changes: the de�nition of i yields �c � 1 = i; and the Euler
characteristic of the surface is 0 rather than 2. Keeping track of these changes,
the proof remains the same. 2

Lemma 3.4 Take T,D as above, with � � 2. For a particular L-type � ,
jLj �2, take t a star representing � and L(t)=L. If all elements of C(t), and
all elements of A(t) have the same parity then there is either a disk face
representative of � in GT (L), or there is an x-web � in GD such that the set
of vertices of � is a subset of either C(t) or A(t).

Proof Suppose there is a type � , (with star t, [t]=�), not represented in
GT (L) and let s be the number of switch edges in ��T (t). Then by the above
lemma, s � (�c � 1)p, i.e. there are at least (�c� 1)p=2 edges whose ends
are both incident to, say, elements of C(t). Thus at least (�c � 1)p of the
�cp clockwise switches of G(L) are incident to switch edges, and so there is
some vertex x of GT such that at least (�c� 1) switch edges are incident to
the clockwise switches at x.
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Then as in Lemma 2.5 in [GL2], we see that on GD there is a fat vertex
y0 2 C(t) such that for y 2 C(t) � y0 every x-edge in GD incident to y has
both ends incident to fat vertices in C(t). All but one x-edge at y0 connects
y0 to a fat vertex in C(t). Since all elements of C(t) are parallel, these edges
form an x-web. 2

Lemma 3.5 Assume � � 2. If GD contains a great x-web �, let U be the
component of D̂ � � such that all the vertices of C = D̂ � U have the same
parity. Then GD contains two Scharlemann cycles in C.

Proof Each component of C � � is bounded by a great x-cycle and thus
contains a Scharlemann cycle by Lemma 2.2 of [GL2]. Since � � 2 there are
at least two such components. Note that the proof rests on T separating V .
2

We will now devote some energy to the following lemma, modeled closely
in statement, proof and intent on Lemma 2.8.1 of [GL1] and Proposition
3.1 of [GL2]. With the geometric interpretation of this lemma provided by
Lemma 3.9 the proof of Theorem 3.1 will be complete.

Proposition 3.6 Take T and D as above. Let C be a disk in D̂ such that
GD � int(C) or let C be a disk bounded by an x-web �. Let L be the vertices
of GD � � in int(C). Assume � � 2. Then GD contains two Scharlemann
cycles, or GT contains one Scharlemann cycle, or each L-type � is represented
by some face of GT (L).

Note that if we take C such that GD � int(C), we take � = ;.

We will proceed by looking for a disk face representative of each L-type
� on G(L) = GT (L) � GT . If a given L-type � is not represented, we �nd
an x-web in the interior of C. In this way, we eventually �nd all L0-types in
G(L0) for a particular set of labels L0 � L or we arrive at a great x-web on
D| that is, an x-web bounding a disk in D̂ containing no vertices of GD

other than those of the x-web itself.
Lemma 2.4.1 and its relatives in 2.6 and 2.7 of [GL1] are used to demon-

strate that if all L0-types are represented in G(L0) for L0 derived as above,
then a disk face of G(L) represents � . Although [GL1] considers graphs on
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planar surfaces and we are looking for representatives of types on a torus,
these lemmas and arguments take place within a particular disk face of the
graph and so are local in nature. Thus we will invoke them as needed.

Lemma 3.7 jLj > 1, or GT contains a Scharlemann cycle, or GD contains
two Scharlemann cycles.

Proof Assume jLj � 1. Then either � is a great x-web or L contains
exactly one vertex v, antiparallel to those of �. In the �rst case there are
two Scharlemann cycles in GD by Lemma 3.5.

In the second case, note that any edge of GD with both ends incident to
v must bound a one-sided face on D, since L = 1 and C is a disk. Since there
are no one-sided faces in GD, every edge incident to v must connect v to a
vertex of �. By the parity rule, every edge with label v on GT must connect
parallel vertices of GT . Let � be the subgraph of GT consisting of all vertices
of GT along with all edges of GT with label v. Note that the vertices of each
component of � are all parallel; there must be at least two such components
since T separates V .

There exists a component c of � within an open annulus a � T such that
� \ a=c. This annulus may or may not be essential in T . Let G=vertices
and edges of GT completely contained within a. That is, c is a subgraph of
G. We will consider the faces of both c and G to be only those faces of GT

completely contained within a; i.e. all faces of c and G are disks and the
interior of no face of G intersects an edge of GT .

Claim 1: Any digon in c induces a Scharlemann cycle on G.
Proof: Without loss of generality, choose an innermost digon � on c with

edges e1, e2, and vertices x, y. Let q be the number of vertices of GD.
If both edges are not incident to v at the same vertex, � is a great v-cycle

within a disk and so by Lemma 2.6.2 of [CGLS], G contains a Scharlemann
cycle.

If both edges are incident to label v on, say, x, there exists at least q � 1
edges of G in the interior of the digon, all of which connect x to y. On y,
then, we see q� 1 consecutive labels in int �, one of which must be v since v
could not have been the label of either ei at y by the parity rule. But then
there is an v-edge in � and � was not innermost in �.
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Claim 2: Any trigon in c induces a Scharlemann cycle on G.
Proof: Without loss of generality, choose an innermost trigon t with ver-

tices x1,x2,x3, and edges e12, e23, e31, with eij running between xi and xj. If
the eij do not form a great v-cycle, we have after relabeling that e12, e23 are
both incident to v at x2. Now there are at least q + 1 edges in t meeting x2
(including e12, e23). Then there are at least (q + 1)=2 edges parallel to, say,
e12. Thus there is some label w such that there are w-edges e1, e2, parallel
to e12.

The proof of case 1 can be applied to the digon bounded by w-edges e1,
e2, which thus contains a Scharlemann cycle in G.

Claim 3: There exists a trigonal or digonal face of c.
Proof: Abstractly consider c�, a graph on the 2-sphere formed by adding

two disks to the boundary of a. c� may now have up to two one-sided faces,
each with an edge parallel to the boundary of a. So we will show that c�

has at least three faces that are either one-sided, a digon or a trigon, giving
at least one digonal or trigonal face for c. Let fk be the number of k-gonal
faces of c�, f = �fk, e be the number of edges of c�, v be the number of
vertices of c�. Assume for contradiction that f1 + f2 + f3 � 2. Note e=�v
by the parity rule, and 2e = �kfk � 2 + 4(f � 2). Since v + f � e = 2, we
have e=�+ (e+ 3)=2� e � 2 or e(1=�+ 1=2� 1) � 1=2. However this is a
contradiction since we now invoke that � � 2 and so (1=�+ 1=2� 1) � 0.

Thus in the second case of the lemma there is a trigonal or digonal face
of c and consequently a Scharlemann cycle on GT . 2

Lemma 3.8 Assume the hypotheses of Proposition 3.6. Then there is a
face of GT (L) representing the trivial L-type � or there are two Scharlemann
cycles in GD.

Proof Let J � L be the set of vertices in C of opposite sign from those of
�, or if � = ;, let J be the set of, say, + vertices in C. Assume GD does not
contain two Scharlemann cycles, and hence no great x-web. Thus J 6= ;.

Case 1: Suppose at each vertex x of GT we can take two edges e1(x); e2(x)
incident to labels in J at x and connecting x to a parallel vertex. Note that
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for any such edge, the other label is not in J by the parity rule so there are
2p such edges if there are p vertices of T . Let F be the collection of faces of
the subgraph � of GT formed by these edges and the vertices of GT . Then
p�2p+�f2F�(f) = �(T̂ ) = 0. Recall that p > 0 and so there must be some
f 2 F with �(f) > 0. That is, there is a disk face in this subgraph incident
only to parallel vertices. Now any face of GT (L) contained in f is also a disk
face incident to parallel vertices and thus represents the trivial L-type.

Case 2: This follows the proof of Case 1.a of Lemma 3.3 of [GL2]. Suppose
there exists a vertex y of GT such that at most one of the edges incident at
labels in J to y connects y to a parallel vertex (possibly y itself). Let v0 be
the label at y of the edge connecting y to a parallel vertex. (fv0g may be
empty). Then on GD, for all vertices v 2 J � fv0g, all edges incident to the
label y at v connect v to parallel vertices, by the parity rule. Moreover, all
but at most one of the edges incident to y at v0 connect v to parallel vertices.
All these parallel vertices must be elements of J since J is precisely the set of
vertices parallel to v,v0 within components of C � �. Thus there is a y-web
�0 between vertices of J . Let C0 � D̂ be the disk bounded by �0 in int(C).
Let L0 � L be the set of vertices of GD in int(C0) Then since jL0j < jLj we
may assume by induction that there exists two Scharlemann cycles on GD

or the trivial L0-type is represented by some disk face of GT (L0). Any such
disk face in GT (L0) is incident only to parallel vertices of GT and so any face
of GT contained within this face will represent the trivial L-type. 2

Proof of Proposition 3.6 This is simply the proof of Proposition 3.1 in
[GL2], using Lemma 3.4 for Theorem 2.5 [GL2], Lemma 3.7 for Lemma 3.2
[GL2] and Lemma 3.8 for Case 1 of the proof of Proposition 3.1 [GL2]. Recall
the comments immediately following the statement of Proposition 3.6. Note
that the inductive D used in [GL2] is our C. 2

Next we give the geometric interpretation of the results of Proposition
3.6. This will complete the proof of Theorem 3.1.

Lemma 3.9 If D, T are constructed from a composite twisted unknot as
above, GT cannot represent all types and GD cannot contain two Scharlemann
cycles.
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Proof By the proof of Proposition 3.6, either all types are represented
by disk faces of GT or GD contains two Scharlemann cycles. (Recall that
Scharlemann cycles represent all types). In the �rst case, since there are no
inessential simple closed curves of intersection, these same faces are present
in the complex T [ D� [ @V � V (0). [P] establishes torsion in the �rst
homology of a subcomplex, a contradiction, since V (0) �= S3.

Suppose there are two Scharlemann cycles on GD. Since � bounds at
most one face of GD (recall � may be vacant), we can assume that at least
one Scharlemann cycle is not incident to � and thus lies in the graph of
intersection of A and D. This is our contradiction, since a Scharlemann
cycle above the sphere A� provides a lens-space summand in the ambient
manifold, V (�) �= S3. 2

Proof of Theorem 3.1 Taking D itself to be our disk C we apply Propo-
sition 3.6 and Lemma 3.9. 2

Interestingly the techniques of [GL1] only narrowly fail in the proof of
Theorem 3.1. For only one degenerate case, when p = 2, do we require the
stronger conclusion of Proposition 3.1 of [GL2], that in the absence of some
type on GT , we �nd two Scharlemann cycles on GD. In [GL1], no assumption
is made about the magnitude of �. Consequently, those techniques guaran-
tee only one Scharlemann cycle on GD if disk face representatives of all types
cannot be found on GT . If our geometrical interpretation relies on a Scharle-
mann cycle on GD, we must insure that this cycle is not adjacent to �, and
indeed we can for p > 2. Only when p = 2 do we need two Scharlemann
cycles. For this reason alone do we invoke the more powerful techniques of
[GL2].
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4 On Composite Twisted Composite Knots

In Appendix C, we produce a large in�nite class of pairs of composite knots
related by a single twist. Here we consider the circumstances under which
the (� � 2,V )-twisting of a composite knot K = k#k0 yields a composite
knot. Clearly one obtains a composite K� = k�#k

0 when a sphere splitting
the summands of K is contained within V . For the purposes of this analysis,
if such a sphere exists, we say the (�,V )-twisting of K is a trivial twisting.
Furthermore [HMo] gives an example of a pair of composite knots related
through two full twists, the right and left handed granny knots. But no
other pairs of composite knots can be related through twisting two or more
full twists, as we set out to prove:

Theorem 4.1 If K0 = K � V (0), K� = K � V (�) are both composite
knots then either � < 2, or K� is obtained from K0 by a trivial twisting, or
� = 2 and K0, K� are the right and left handed granny knots.

The unknot cannot arise as a trivial twisting of a composite knot; nor
can any twisting of the granny knot give rise to an unknot by [MY] (or in
this case, more directly, by examination since the proof precisely speci�es
the (2; V )-twisting relating the two granny knots); thus by Theorem 3.1, we
have:

Theorem 4.2 At most one composite knot, either K1 or K�1, can arise
from a particular V -twisting of an unknot K.

Assume, then, that K0, K� are in fact both composite, that � � 2
and that K� is obtained from K0 by a non-trivial (�,V )-twisting. We will
examine the graphs of intersection of punctured spheres derived from the
splitting spheres for K0 and K�.

For distinct �; � 2 f0;�g, let H� be the core of the complement of V
in V (�) and let P �

� be the sphere embedded in V (�) that divides K into
knotted arcs, chosen so that P� intersects H� minimally and transversally.
Let P�=P

�
� \ V . We can assume that P0, P� meet minimally. That is, all

curves of intersection are arcs with ends on @V or are simple closed curves
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essential in both P� � K. Note further that no curves of intersection need
meet K. Let G� be the graph on P� of the arcs of intersection with P� and p�
be the number of boundary components of P�. As P� separates, p� is even.
Let P̂� be the abstract two-sphere formed by contracting the the fat vertices
of G� to points.

Note that if either P �
� does not meet @V , then P �

� would lie within V and
K� would arise as a trivial twisting of K0. Thus, each P� must have at least
two boundary components, or K� is obtained from K0 by a trivial twisting.

As in previous sections, we can arrange that our graphs of intersection are
as in [GL1] and [GL2]. All boundary components of P� are parallel and meet
each boundary component of P� with multiplicity �. Again the parity rule
holds, for we are discussing the graphs of intersection of orientable surfaces
in an orientable manifold.

By the minimality of the construction, we can assume any one-sided faces
intersect K, since any one-sided faces missing K could have been removed
without a�ecting the intersections of the P� with K. There may be one or
two one-sided faces on each P� which do meet K (Recall K meets P� exactly
twice). Such one-sided faces will not, in general, be removable unless we
allow the number of intersections of K with P� to increase. Consequently,
we are forced to allow up to two such one-sided faces in each G�. In the
combinatorics, such one-sided faces will be trivial Scharlemann cycles as well
as trivially representating each type. These fail to produce torsion in the
appropriate complex. Thus we attempt to apply the techniques of [GL2] to
obtain enough Scharlemann cycles and representatives of each type to insure
our result is of geometric use.

A trivial face of G�(L) is a disk face meeting K. Note there are at most
two such faces on each P�. A non-trivial representative on G�(L) of an L-
type � will be any disk face representing � that is not trivial. Not only does
this de�nition allow us to avoid choosing one-sided faces as representatives,
but in the �nal proof insures that any disk face representing a type does not
contain any simple closed curves of intersection (any such curve, recall, would
be essential in P��K). Similarly we ask that a non-trivial Scharlemann cycle
be a Scharlemann cycle missing K.
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We must be particularly careful with our induction to avoid producing a
trivial Scharlemann cycle. We can eliminate one trivial face by begining our
induction in a regular neighborhood of the complement of this face. We try
to avoid working our way towards the other trivial face.

We de�ne a non-trivial x-edge cycle, relative to a region C, as an x-
edge cycle bounding a disk C0 � C such that C0 does not contain a trivial
face. The interior vertices of an x-edge cycle are those in the interior of
C0. De�ne a trivial x-web as an x-web having only two components in its
complement. (Note that a trivial x-web consists of exactly one vertex and one
loop edge when � � 2). A non-trivial x-web provides an interior component
not containing a trivial face, i.e. a non-trivial x-edge cycle. We induct within
this, ultimately producing a non-trivial Scharlemann cycle. The �gure below
illustrates these x-objects. Note that all vertices of any x-object are of the
same parity.
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Figure 18: Various x-objects

As the following lemma points out, when � = 2, we may not be able to
avoid the trivial x-objects; a certain class of type may have only two (possibly
trivial) representatives, yet will provide only trivial x-webs with which to
induct. In turn this induction may steadily hone in on a trivial Scharlemann
cycle. In this case we instead use certain structures arising from a special
case outlined below to fully describe the graph. Roughly speaking, the two
cases in the conclusion of the lemma below correspond to the second two
cases in the proof of Proposition 4.6.

Lemma 4.3 Take P0, P� as above. Let L be a set of labels in G0. For a
particular L-type � , jLj � 2, with all elements of C(t), or all A(t) having the
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same parity, take t to be a star representing � and L(t) = L. Let c = jC(t)j =
jA(t)j. If � � 2 then there is non-trivial representative of � in G0(L) or

I) if �c � 3 then there is a non-trivial x-web � in G� such that all vertices
of � are in C(t) or all are in A(t).

II) if � = 2 and c = 1 then there are p0 loop edges incident to the two vertices
of G� in C(t) [ A(t).

Proof Let r be the number of disk face representatives of � and s be the
number of switch edges in G0(L). As in Lemma 2.3.2 of [GL1], with the
changes noted in the proof of Lemma 3.3, a simple Euler characteristic count
reveals that r + s � (�c � 1)p0 + �(P̂0). If r � 3 there is a non-trivial
representative of � . Assume then that r � 2. Then there are at least (�c�
1)p0 switch edges in G0. Thus at least (�c � 1)p0 of the �cp0 occurences
of the labels in, say, C(t) are incident to switch edges. There is then some
vertex v of G0 such that at least (�c� 1) switch edges are each incident to
exactly one of the �c occurences of the labels of C(t) at v. (Note that the
switch edges cannot be loop edges by the parity rule).

Then on G� we see (�c� 1) v-edges connecting parallel vertices in C(t).
Let � be the subgraph of the vertices of C(t) in G� and these v-edges. Note
that any component of � will be an v-web. We take � to be any component
of � with more edges than vertices. In the �rst case of the lemma, �c � 3
and thus such a component must exist. Then P0 � � has at least three
components and � is non-trivial.

In the second case of the lemma, simply note that if there are no non-
trivial representatives of � then there are at least p0 switch edges. Such
edges have both ends incident to either the single clockwise switch label or
the single anticlockwise switch label. On G� we see p0 loop edges incident
to the vertices corresponding to these labels. 2

4.1 The Special Case

Hayashi and Motegi [HMo] give an example of a pair of composite knots
related through a (2; V )-twisting, the right and left handed granny knots. In
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order to establish our approach to the proof of Theorem 4.1, we must �rst
examine the special case that leads to trouble with the usual techniques. We
will see that the sorts of graph of the special case are exactly those for which
the second case of Lemma 4.3 must be invoked; that is, these graphs lack
representatives of some loop (L)-type, an (L)-type � such that there exists a
�k = dk(�) such that �k has only one clockwise switch.
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A

2

2 2

2

B

B B

B

Figure 19: A pair of graphs which induce the granny knot

The graphs which lead to the special case, and the complex they induce,
are illustrated in �gures 19 and 20. This is the only pair of two-verticed
graphs G0 and G2 that could possibly arise from two composite knots by a
non-trivial (2; V )-twisting. In Lemma 4.4 we show this pair of graphs must
induce a granny knot in each V (�). In Lemma 4.5 we note that any pair of
ring graphs G0, G2 arising from a non-trivial (2; V )-twisting can be replaced
by the graphs of �gure 19. Finally, in Proposition 4.6, we show that any pair
of graphs of intersection that could have actually arisen from a non-trivial
(��2; V )-twisting must in fact be ring graphs with � = 2, completing the
proof of Theorem 4.1.

Lemma 4.4 Suppose two-verticed G0, G2 arise from a non-trivial (2; V )-
twisting relating composite knots K0 = K � V � V (0) and K2 = K � V �
V (2). Then the composite knots K0 and K2 must be granny knots of opposite
parity.

Proof A quick analysis shows the graphs of intersection must be as in �gure
19, or contain Scharlemann cycles, or have more than two one-sided faces,
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Figure 20: The granny knot results from the graphs

or have the obstruction described in the second paragraph of the proof of
Lemma 4.5.

Consider the complex in, say, V (2). The one-sided faces of G0 lie on
opposite sides of P2 and must be incident to di�erent edges of G2 connecting
the fat vertices of G2. Note that the one-sided faces �x the position of the
handles (the components of S3 � V � P �

2 ) with respect to the graph G2,
up to an orientation reversing homeomorphism, and so the placement of the
trigonal faces is forced. Thus the complex in V (2) is as pictured in �gure 20.

We now note that any knot K � V � V (2), passing through each one-
sided face of G2 and G0 exactly once and missing the complex P0 [ P2 [ @V
elsewhere, must in fact be a granny knot.

In �gure 20 the shaded faces of G0 lie to one side of P2, forming a trigonal
disk pictured at left and a one-sided disk pictured at right. We will see these
disks force a trefoil summand k of our composite knot K in V (2). Above P2
the boundary of a neighborhood of the shaded trigonal face of G0, a portion
of @V , and P2 itself together bound a ball B containing a summand k of K
and contained within V . The K� are related by a non-trivial twisting and
so k must be unknotted within B. Thus k must be as pictured in the right
of �gure 20, a trefoil summand. Similarly we see that the cosummand for
k must be a trefoil of the same parity, and so K is a granny knot in V (2),
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meeting each one-sided face of the complex exactly once. Since the twisting
operation preserves the orientation of V , and thus sends the (2; 1) curves
of @P0 � @V to (0; 1) curves and the (0; 1) curves of @P2 � @V to �(2; 1)
curves, we see that in V (0), the picture of the complex is exactly reversed,
and K is thus a granny knot of the opposite parity in V (0). For later use,
note k can be isotoped to actually lie on the boundary of a neighborhood of
the complex. 2

We now analyze the class of graphs leading to trouble with the usual
techniques. We show that they could only lead to the conditions required for
the application of Lemma 4.4, and thus to the example of [HMo]. Assume
� = 2 for this discussion.

G� is a ring graph if it consists of nested ring annuli. A ring annulus is
an annulus in P̂� containing exactly two vertices of opposite parity connected
by exactly p� edges, and at each vertex the remaining labels are incident to
concentric loop edges parallel to the boundary of the annulus. Note that if
each of the G� is a ring graph, then all edges incident to two di�erent fat
vertices have both ends on the same label. Note also that our ring graphs
have exactly two one-sided faces, and thus in either P̂�, all loop edges are
concentric. Finally, the faces of a ring annulus in P̂� must be: two punctured
one-sided faces incident to the boundary of the annulus, and either 2p� � 4
bigons and two trigons, or 2p�� 3 bigons and a quadrilateral. A pair of ring
graphs, with their labels removed for clarity, is illustrated in �gure 21.

Lemma 4.5 Let V be a solid torus. Suppose G0, G2 are ring graphs arising
from a pair of composite knots K0 = K � V � V (0) and K2 = K � V �
V (2) related through a non-trivial (2; V )-twisting. Then we can �nd splitting
spheres for K0 and K2 that each meet @V twice.

Proof We show that K2 has such a splitting sphere. The argument for K0

is exactly the same. We analyze such graphs in a solid torus directly: Let
the innermost ring annulus have fat vertices x, y on G0, say, and be incident
to a one-sided face C on labels, say 1 and 2. Then we consider two cases:
in this annulus, there is a bigon C1 between x and y with ends incident to
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G2

G0

Figure 21: A pair of ring graphs

the labels 1 and 2, or there is not and thus a trigon C2 is incident to the
remaining occurences of the labels 1 and 2. Note that the �rst case arises
exactly when there is a quadrilateral in the annulus.

Consider the �rst of these cases. Above P2 we examine the structure
formed by C and C1 and the segment S of the boundary of V running between
vertices 1 and 2 of G2 and vertices x and y of G0. Clearly C1 and S form an
annulus above G2. Then C lies to one side of this annulus and the one-sided
faces of G2 to the other, since all loop edges are parallel. K must meet C,
cannot meet G2 to the same side of the constructed annulus as C, and yet
cannot escape to meet G2 elsewhere. But of course, K must meet G2 twice,
by construction, and we have a contradiction (�gure 22).

On the other hand, suppose a trigon C2 is incident to the remaining
occurences of the labels 1 and 2 in the ring annulus incident to C. We will
produce a splitting sphere for K in V (2) that meets @V exactly twice. In
V (2), let S be the portion of the complement of V between the fat vertices
1 and 2 that lies to the same side of P2 as C2 and C, and R be the ring
annulus incident to fat vertices 1 and 2. Note that C trivializes the handle
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C

C1

Figure 22: There are no bigons on the same label pair as a one-sided face

S and thereby �xes the relative positions of C2 and R (�gure 23). Let B be
a small neighborhood of R [ S [ C [ C2. Note that @B meets @V exactly
twice, and that because K must meet C, exactly one arc k of K lies within
B. Furthermore, B is a ball, as can be seen by noting how the neighborhood
of the trigonal face can be isotoped to close o� the hole at the boundary of
the neighborhood of the ring annulus (C2 can slide over C). Finally, we note
that there is no isotopy of k to the boundary of B holding the ends of k �xed,
because the union of k with an arc on the boundary of B connecting the ends
of k is a trefoil knot. Such an arc can be produced by considering the trefoil
summand from the discussion of �gure 20. Recall that this summand could
be isotoped, in e�ect, to the boundary of B �N(C).

Since (B; k) can be gently isotoped to lie above P2, the complement of
B in V (2) also contains a single, knotted arc of K and so @B is a splitting
sphere for K that meets @V exactly twice. 2

So we know that there are only two fat vertices on both of the P�. Conse-
quently, the graphs G� must be as in �gure 19, and so if our composite knots
K0 and K2 are related by a non-trivial twist, they must be the right and left
handed granny knots by Lemma 4.4.

In Section 4.2 we aim to show that any pair of graphs P0, P� that give
rise to a complex that can embed in S3 is in fact a pair of ring graphs. To
do this we de�ne a loop annulus A � P̂� to be an annulus such that:
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C2

C

in ∂R

R

Figure 23: R [ S [ C [ C2

(i) all edges incident to vertices of G� in A are contained within A;
(ii) A contains no trivial faces;
(iii) either there is an external vertex, v, a vertex incident to at least p0=2
loop edges that are parallel in P� to the external boundary of A;

or A = P̂� � fx1; x2g where the xi are each points in di�erent faces of
G� and there is no external vertex.

Although a loop annulus' exterior vertex may or may not lie within the
annulus itself, by construction we will see that the exterior vertex always
lies within some loop annulus. The interior vertices of A are the vertices of
G� \ A� x where x is the external vertex. See �gure 24.

4.2 The General Case

The following is a reworking of Proposition 3.1 of [GL2]. In order to com-
pensate for the presence of trivial faces on G�, we must take extra measures
to control the course of our induction.

Proposition 4.6 Let P�; P0 be as above. Let � � 2. Let C � P̂� contain
no trivial faces and be one of:

I) a disk bounded by a non-trivial x-edge cycle, �.
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II) a disk with interior vertices and boundary � a collection of loop edges all
incident to a single vertex.

or III) a loop annulus, with � = ;.

Let L be the interior vertices of C. Then either G� or G0 contains a non-
trivial Scharlemann cycle, each L-type � has a non-trivial representative on
G0(L), or C can be partitioned into ring annuli.

To accomplish this, we seek a Scharlemann cycle within C on G�, or three
Scharlemann cycles on G0, or a non-trivial representative of each L-type on
G0(L). In cases I and II, this will succeed. However if C is a loop annulus, we
face the additional possibility that we lack non-trivial representatives of loop
types. In this case, we inductively show the loop annulus is a ring annulus or
can be partitioned into loop annuli with fewer internal vertices or contains a
disk bounded by a non-trivial x-cycle..

We will proceed by induction on jLj. Thus we begin with:

Lemma 4.7 Taking the hypotheses of Proposition 4.6, jLj > 1, or C is a
ring annulus, or one of the G� contains a non-trivial Scharlemann cycle.

Proof If C is a loop annulus with L = 1, then clearly C is a ring annulus
or contains a Scharlemann cycle. Thus assume C is a disk. The proof is now
the same as Lemma 3.2 of [GL2], noting that � is a non-trivial great v-web
and thus contains a non-trivial Scharlemann cycle.

2

Proof of Proposition 4.6 This is modeled on the proof of Proposition
3.1 of [GL2], using Lemma 4.7 for Lemma 3.2 of [GL2] and Lemma 4.3 for
Lemma 2.5 of [GL2]. We assume jLj � 2.

In the �rst two cases of the hypothesis, we proceed much as in the proof
of Proposition 3.1 of [GL2], with relatively minor changes.

In the third case of the hypothesis, we �nd all L-types on G0, or obtain
a disk C0 � C in which we can induct, or if a loop L-type is missing under
speci�c circumstances, we partition the loop annulus into smaller loop annuli,
with fewer internal vertices and whose external vertices correspond to the
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switches of the missing loop-type's �k. The lack of a non-trivial non-loop
type yields a non-trivial Scharlemann cycle or one of the structures given in
the �rst two cases of the hypothesis of the proposition.

We group our arguments by L-type (the trivial L-type is de�ned in [GL1]):

(1) � is the trivial L-type.

(2) � is non-trivial and not a loop type.

(3) � is a loop-type.

In general, we note that if at any point we �nd a non-trivial [great] x-web
within C we can �nd a non-trivial [great] x-edge cycle �0, a subset of this
x-web, bounding a disk C0 � C. Also, by Lemma 2.2 of [GL2], note that if
C is bounded by a non-trivial x-edge cycle and the interior of C contains no
vertices of G� then C contains a non-trivial Scharlemann cycle.

(1) � is trivial. We follow the proof of Case (1) of Proposition 3.1 of
[GL2]. If C is a disk, let J be the set of interior vertices of C of opposite
parity of the vertices of �; or if C is a loop annulus, let J be the set of interior
vertices of opposite parity of any external vertex lying in the interior of C.
(If � is vacant or if C is a loop annulus without an interior external vertex,
choose the J to be the larger class of parallel vertices interior to C.) If J is
vacant then there is a non-trivial great x-edge cycle bounding a disk in C,
and consequently a non-trivial Scharlemann cycle in G�.

Thus assume jJ j � 1. If for each vertex y of G0 there are two distinct
edges, each meeting y at labels in J and connecting y to parallel vertices,
we proceed as in [GL2] and obtain at least four representatives of the trivial
L-type on G0. Otherwise, we �nd ourselves in Case (1.b) of the proof in
[GL2] and obtain (�jJ j � 1) x-edges incident to the vertices of J . Thus if C
is a disk, or if jJ j � 2, or if � � 3, we are guaranteed a non-trivial x-edge
cycle �0 incident to the vertices of J , bounding a disk C0. In this case, we
let L0 be the vertices of G� within C0 and follow the last half of Case (1.b)
of Proposition 3.1 of [GL2].
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So assume that C is a loop annulus, that we must have chosen J to
contain only a single vertex v, and that � = 2. Let I be the set of vertices
of C not in J and suppose jIj = 1; this vertex must have parity opposite to
the parity of v. Now if there are more than p0=2 loop edges incident to v, we
�nd a non-trivial Scharlemann cycle among these edges; if there are exactly
p0=2 loop edges incident to v, then C is a ring annulus. If there are fewer
than p0=2 loop edges incident to v, then there are at least p0 + 1 v-edges on
G0 with ends on parallel vertices; consequently there are at least three disks
on P0 bounded by such edges. These disks are in fact bounded by a great
v-edge cycle and so each contain a Scharlemann cycle on G0, one of which
must be non-trivial. Then if C contains only one other vertex besides v, we
have proven the proposition.

Assume then that jIj � 2. Since (�jJ j � 1) � 1 there is at least one
loop edge incident to the vertex in J , and thus there is a label w such that
at most one of the 2jIj occurences of w on the vertices of I is incident to an
edge meeting v. But since the vertices of I are all parallel, the parity rule
insures that there are at least 2jIj � 1 distinct w-edges with both ends on
vertices of I. A quick Euler characteristic count yields at least one disk C0 in
C bounded by an w-edge cycle �0. In this �nal case, then, we let L0 be the
vertices of G� within C0 and follow the last half of Case (1.b) of Proposition
3.1 of [GL2].

(2) � is non-trivial and not a loop-type. This almost exactly follows Case
(2) of Propostion 3.1. However, there is one important change in the actual
inductive step. If we fail to �nd the requisite non-trivial representative of a
particular L-type � , we proceed as follows (refer to the top of page 18, [GL2],
applying Lemma 4.3 in place of Theorem 2.5 of [GL2]):

We �nd a non-trivial x-web �0 within C. We can still assume that the
vertices of �0 are contained within C(t) by the reasoning in [GL2]. Let
�0 � �0 be a non-trivial x-edge cycle bounding a disk C0 in C and take
L0 to be the vertices of L in C0. Note jL0j < jLj and we can thus proceed
with the induction as given in the last paragraph of the proof of Case 2 of
Proposition 3.1 of [GL2].

(3) � is a loop type
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If � � 3 then we apply the argument of the case above.

If � = 2, and C is not a loop annulus then applying Lemma 4.3, we
produce two loop vertices within C together incident to at least p0 loop
edges. One of these vertices v then is incident to at least p0=2 loop edges.
After a possible change of orientation, as in [GL2], we can assume v 2 C(t).
If there is a disk C0 � C containing interior vertices, bounded by loop edges
incident to v, we take �0 to be the bounding edges of C and L0 to be the
interior vertices of C0. We then proceed exactly as in the second paragraph
of the proof of Case 2 of of Proposition 3.1 of [GL2]. If there is no such
disk, then an innermost loop edge incident to v bounds a one-sided face, a
contradiction.

We now consider the motivating case: � is a loop type, � = 2, and C
is a loop annulus. We set forth as in Case 2 of Propostion 3.1 of [GL2],
constructing a sequence of stars, etc. until reaching �k = dk(�), such that
jC(tk)j = 1. If there is a non-trivial representive of �k in G0(Lk) then we are
done just as in [GL2]. Otherwise the two vertices v1, v2 of C(tk) [ A(tk) are
incident to at least p0 loop edges. We seek either a Scharlemann cycle in C,
or a disk C0 � C bounded by loop edges incident to one of the vi in which
to induct, or to partition C into loop annuli with fewer internal vertices. We
have three cases:

If one of these vertices is incident to more than p0=2 loop edges we �nd a
non-trivial x-edge cycle �0 bounding a disk C0 � C.

Thus assume both vertices are incident to exactly p0=2 loop edges. If
these edges are not all concentric in P̂� with the boundary of C, or if one
of these vertices has loop edges that are not parallel in P�, we �nd a a disk
C0 � C bounded by a collection of loop edges �0, all incident to a single
vertex, but containing at least one interior vertex.

In either of these situations, we again proceed as in the �nal paragraph
of Case 2 of Proposition 3.1 of [GL2].

Finally we consider the case when the p0=2 loops incident to vi are parallel
in P� for each vi. Note that at either vi the loops must all be incident to a
single label interval, or there would be some label x such that two parallel x-
edges would be incident to one of the vi. These would bound a great x-cycle
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which would contain a non-trivial Scharlemann cycle.
Partition the original loop annulus A along curves parallel to the loop

edges incident to the vi (see �gure 24). We thus get three smaller loop
annuli. First, note that for each new loop annulus, at least one of the vi can
serve as an external vertex. If both do, choose either. Second, one of the new
annuli may be vacant. Simply ignore any such annulus. If the original loop
annulus contained its external vertex, this vertex will be internal to one of
the new annuli. However, there are fewer internal vertices among all the new
loop annuli together than there were in the old. (Note that if the outer annuli
are vacant in the case on the left of �gure 24 then the original loop annulus
did not contain its external vertex, and thus we have one less internal vertex
than before.)

Thus the induction proceeds. Either each of the new loop annuli are ring
annuli, or one of the new loop annuli, say A0, containing interior vertices
L0 contains a non-trivial representative of each L0-type. As before, we may
assume that the external vertex of A0 is the clockwise switch of dk(�). We
proceed as at the end of Case 2 of Proposition 3.1 of [GL2]. The external
vertices are black in the illustration; the internal vertices are white.

Figure 24: Partitioning loop annuli
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Thus we can either �nd our loop L-types or, by induction on jLj, we see
that C is composed of ring annuli.

2

Proof of Theorem 4.1

Suppose there are k 2 f0; 1; 2g trivial faces in G�. Choose k points from
the distinct interiors of these faces, 2 � k points from any components of
P� � G�, and let A be P̂� with these points removed. Thus A contains no
trivial faces.

Applying Proposition 4.6 we have, by the techniques mentioned at the
end of Section 3, torsion in either V (�) or V (0), a contradiction, or G�=2

was a ring graph. By switching our choice of which composite knot is K0 and
which is K� we again obtain a contradiction or G0 is a ring graph. Thus, by
Section 4.1, we have in this case that our composite knots related through
twisting are the right and left handed granny knots. 2

The loop type techniques should be more widely applicable to settings
on surfaces with genus, where there are at least a few essential curves on the
surface, missing the graphs of intersection.
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A In�nite families of graphs with j@Aj > 2

All published examples, and all the examples classi�ed in Section 2, arise
when the splitting sphere for K1 is punctured twice by @V , that is, when A
divides V into two solid tori, each containing a component of K1, as pictured
at left, below.

For the moment one must wonder if examples for which @V must puncture
the splitting sphere more than twice can even arise. If such an example exists,
the punctured spheres would appear as at right below, two or more annuli
tubed together.

A
∂V

A

∂V

tube

V V

| ∂A|=2 | ∂A|=4

Figure 25: Possible splitting spheres in V

Interestingly, there are graphs of intersection that might serve as potential
GA and GD, such that GA has more than four boundary components on @V ,
and such that neither graph has all types or Scharlemann cycles. However,
for the time being, all known examples of these graphs have more subtle
obstructions, either to properly embedding the induced complex A [ D in
a solid torus V , or to producing two non-trivial summands for the twisted
unknot K = @D � V (1). For example, the pair of graphs in �gure 26 cannot
be correctly embedded in a solid torus, but the torsion in the complex cannot
be detected by the combinatorics developed in [CGLS], [GL1] and [GL2]. The
pair of graphs in �gure 27 contains an abundance of parallel klein bottles.
The pair of graphs in �gure 28 can be embedded correctly in a solid torus,
but both of the summands of K must be trivial. The pairs of graph in �gures
27 and 28 can each be extended to an in�nite family of pairs of graphs.
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Figure 26: A pair of graphs of intersection with torsion but not all types
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Figure 28: A pair of graphs that induces only an unknotted twisted unknot
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B Presentations of published examples of com-

posite twisted unknots

The �rst example below is from [Mo]. The third and �fth are from [MY]. In
all the examples, the twists in GA are normalized to �t parallel (1; 1) curves
on @V , just as GA of �gure 9 is related to the arcs on A [ @V � V in �gure
7.

1 Our �rst example, (3; 2)#(5; 2) was published in [Mo].

(3,2) #(5,2)

Figure 29: A [ @V for (3; 2)#(5; 2) and GA for (p; q)#(p+ q; q)

2 (3; 2)#(5;�2), shown in �gure 30 generalizes to the twisted unknot
(p; q)#(p+ q;�q) for all relatively prime p; q. Here GA is parametrized by a,
b, and j: if p > q, p = jq + a + 1, 0 < a + 1 < q and b = q � a� 1; if p < q,
a = q � p� 1, b = p, and j = 0 (�gure 29). Thus for (3; 2)#(5;�2), we have
j = 1, a = 0, and b = 1.

3 Teragaito's Tn#T�n+1. Although the presentation is not given here, it
is clear from the construction given in [MY] that j@Aj = 2. Note that the
trefoil is T1 and the �gure-eight knot is T2.

4 Similarly, Tn# � Tn+2 is a composite twisted unknot for all n; GA is
parametrized by the number of twists of the long arc in GA, as illustrated in
�gure 31. If n is even, let j = �(n+ 4)=2; if n is odd let j = (n+ 1)=2.
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(3,2) #- (5,2)

q

1

q

1

j twists

b

a

GA

Figure 30: A [ @V for (3; 2)#(5;�2) and GA for (p; q)#(p+ q;�q)

T3#- T5   
GA

1

4

j twists

1

4

Figure 31: T3#T5 and GA for Tn#� Tn+2
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5 For k a two-bridge knot, [MY] points out that k# � k is a twisted
unknot. The general construction in �gure 32 is to lay one bridge across
a handle, and then let the other bridge follow the other arcs of the knot.
Note that the cosummand pictured beneath A is the reection of the original
two-bridge knot. That is, twisting the handle leaves the knot unchanged in
this example.

In [MY], this example arose as the band sum of two unlinked unknots.
By [E], if such a band sum is composite, the splitting sphere will divide the
band lengthwise, and the knot will be the sum of a two-bridge knot and its
reection, exactly coinciding with this subclass of example.

Figure 32: A [ @V for the sum of a two-bridge knot and its reection

6 In [T1], Teragaito gives an example of a composite twisted unknot in
which one summand is an arbitrary satellite of a particular pattern, the other
summand a (p; p+ 1) torus knot.

Let k be any satellite of the pattern in �gure 33. Note the equivalence
of this description to viewing k as any restricted band sum of two unknots
linked p + 1 times. Teragaito explicitely shows k#(p; p + 1) is a composite
twisted unknot.

In �gure 10, in Section 2.2, we see A[@V for k#(3; 4). Above A the thick
and thin curves are unknots linked four times, and below A the thick curve
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arbitrary half-twists

p+1 full twists

Figure 33: The pattern of a cosummand for (p; p+ 1)

describes a (3; 4) torus knot and the thin curve bounds a disk in V � A.
We can parametrize the graphs by p. There is a region of p � 1 pairs of
alternating thick and thin arcs and one of p�2 thin arcs, and there are other
arcs as shown.

Here is another, similar example, k#(4; 3).

1

p-2 
pairs

p-2

3p-1

1

GA

3p-1

Figure 34: A [ @V and GA for another banded example
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C An in�nite class of composite twisted com-

posite knots

Hayashi and Motegi [HMo] demonstrate that the right and left handed granny
knots are related by a (2; V )-twisting. Above, we show this is the only pair
of composite knots related by a (2; V )-twisting such that there is no splitting
sphere missing @V , and that no such pairs can be related by such a (3; V )-
twisting. However, every composite knot is related to an in�nite collection
of composite knots by (1; V ) twisting!

Choose any odd integer j. Then for any composite knot K there are
in�nitely many (1; V )-twistings relating K to knots of the form K1#(j; 2),
where K1 is a (1; V 0)-twisting of K. The splitting sphere of K meets @V 0

twice, and so K1 is trivial exactly when the setting described in Section 2.2
holds. That is, even if K is a composite twisted unknot, there are an in�nite
number of (1; V 0)-twistings that do not yield an unknot and we can see that
there are indeed an in�nite number of distinct non-trivial composite knots
related to K by a twisting.

In fact, a single in�nite family of graphs gives rise to these twistings! The
complex pictured has two toroidal chambers; a summand for K can be placed
in each with total freedom. In the following illustration, j = 7.

49



G0

A B

j-21

j+1

1

j+1

35

7

6

4

2

1

8

G2

j+1 vertices

Figure 35: Graphs relating all composite K to all K1#(j; 2)
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