Piecewise-Smooth Surfaces as the Union of Geodesic Disks C. Goodman-Strauss

Abstract: We consider a question of G. Fejes Tóth, whether the boundary of a convex body can be the union of three geodesic disks with disjoint interior.

AMS Subject Classification (2000): 53C99, 52A15, 52C20

Key words and phrases: Geodesic disk, convex body.

Figure 1: A geodesic disk

We are motivated by the following definition and question of G. Fejes Tóth [1]:

A geodesic disk (Figure 1) is a piecewise smooth disk D embedded in \mathbb{R}^3 such that there exist a center $c \in D$, and radius $r \in \mathbb{R}$, r > 0, with

(a) for all $x \in \partial D$, d(x, c) = r and

(b) for all $x \in int(D), d(x,c) < r$,

where d is the extrinsic metric on D (i.e. distance measured along shortest geodesics on D) and where a surface, possibly with boundary, is **piecewise smooth** if it is the union of C^2 surfaces, with disjoint interiors and piecewise C^2 boundaries.

Question: Does there exist a convex body in \mathbb{R}^3 such that ∂B is the union of three geodesic disks with disjoint interiors.

We will show, as a corollary to a more general theorem, that the answer is no, at least under the reasonable assumption that the convex body is piecewise smooth.

Let \mathcal{F} be a compact piecewise smooth surface, possibly with boundary,

embedded in \mathbb{R}^3 . For any point x on \mathcal{F} we define the **local excess curva**ture $\kappa_{\mathcal{F}}(x)$ of \mathcal{F} at x as follows: Since \mathcal{F} is piecewise smooth, for $x \in \mathcal{F}$, xis incident to some finite collection $\{\mathcal{F}_i\}$ of smooth subsets of \mathcal{F} . Each $T_x\mathcal{F}_i$ is a sector of a plane centered at x with angle measure a_i . Then for $x \in \partial \mathcal{F}$, we define $\kappa_{\mathcal{F}}(x)$ as:

$$\kappa_{\mathcal{F}}(x) := (\Sigma a_i) - \pi$$

And for $x \in int(\mathcal{F})$, we define $\kappa_{\mathcal{F}}(x)$ as:

$$\kappa_{\mathcal{F}}(x) := (\Sigma a_i) - 2\pi$$

If $x \notin \mathcal{F}$, define $\kappa_{\mathcal{F}}(x) = 0$.

Let \mathcal{F} be a compact piecewise smooth surface, embedded in \mathbb{R}^3 that is the finite union of geodesic disks D_i with disjoint interiors. Consider the set \mathcal{V} of vertices of the graph $\Gamma = \mathcal{F} \setminus \bigcup int(D_i)$ and define

$$\kappa(\mathcal{F}) := \sum_{x \in \mathcal{V}} \kappa_{\mathcal{F}}(x)$$

Theorem 1 Suppose a compact piecewise smooth surface \mathcal{F} , possibly with boundary, embedded in \mathbb{R}^3 , is the union of n geodesic disks with disjoint interiors. Then $\kappa(\mathcal{F}) \geq 2\pi(n - \chi(\mathcal{F}))$.

This immediately gives:

Corollary 2 Let B be a convex body in \mathbb{R}^3 with piecewise smooth boundary. Then ∂B cannot be the union of more than two geodesic disks with disjoint interiors.

This follows immediately from the observation that if B is convex, then $\kappa_{\partial B}(x) \leq 0$ for all $x \in \partial B$ and that ∂B must be a topological sphere. Consequently if ∂B is the union of n geodesic disks with disjoint interiors, $0 \geq 2\pi(n-2)$ and so $n \leq 2$.

Corollary 3 Let \mathcal{F} be a smooth surface, possibly with boundary, embedded in \mathbb{R}^3 such that \mathcal{F} is the union of n geodesic disks with disjoint interiors. Then either \mathcal{F} is a topological sphere and n = 2, or \mathcal{F} is itself a geodesic disk and n = 1.

This follows immediately from the observation that if \mathcal{F} is smooth, $\kappa(x) = 0$ for all $x \in \mathcal{F}$. Hence $n = \chi(\mathcal{F})$. Finally, $\chi \leq 2$ and n > 0, and so $\chi = n = 1, 2$. The theorem follows quickly from the following lemma:

Lemma 4 Let D be a geodesic disk. Then for all $x \in \partial D$, $\kappa_D(x) \ge 0$

We will show that the theorem follows from the lemma, and then prove the lemma.

Proof of Theorem 1: Let \mathcal{F} be a compact piecewise smooth surface, possibly with boundary, embedded in \mathbb{R}^3 , such that \mathcal{F} is the union of ngeodesic disks D_i . Let $\Gamma = \mathcal{F} \setminus \cup D_i$, the finite graph of the boundaries between these disks. The complement of Γ has n components. Let \mathcal{V} be the set of vertices of Γ ; let v, e be the number of vertices, edges of Γ . For every $x \in \mathcal{V}$, let q_x be the number of edges of Γ meeting x. Of course $q_x \geq 2$ and so the lemma gives, for all $x \in \mathcal{V}$,

$$\kappa(x) > q_x \pi - 2\pi$$

(Note that this holds whether x is on the boundary or in the interior of \mathcal{F} .) Thus:

$$\sum_{e \in V} \kappa_{\mathcal{F}}(x) \geq \sum_{x \in V} (q_x \pi - 2\pi)$$
$$= 2\pi (e - v)$$
$$= 2\pi (n - \chi(\mathcal{F}))$$

We now turn to the proof of the lemma.

Proof of Lemma 4: Let D be a geodesic disk with center c and radius r. Since D is piecewise smooth, we can linearly approximate to arbitrary degree a sufficiently small neighborhood of $x \in D$. In particular, in a sufficiently small neighborhood of x, D is arbitrarily close to the union of flat sectors with apex at x, and geodesics are arbitrarily close to straight lines.

Let $x \in \partial D$ and let $\gamma : [0, r] \to D$ be the path of shortest length from c to x. Let λ be a portion of the boundary of D on either side of x. Then we claim that the angle between λ and γ in D at x must be at least $\pi/2$.

For if not, let x_1 be a point very near to x on λ . Take a geodesic perpendicular to ∂D , meeting x_1 , and passing through γ , at some point a

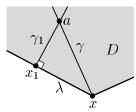


Figure 2: A contradiction arises if the angle between γ and λ is not at least $\pi/2$

(Figure 2). Now for x_1 sufficiently close to $x, d(a, x_1) < d(a, x)$ whence:

$$\begin{array}{rcl} d(c,x_1) & \leq & d(c,a) + d(a,x_1) \\ & < & d(c,a) + d(a,x) \\ & = & d(c,x) \end{array}$$

Thus, $d(c, x) \neq d(c, x_1)$, which contradicts the assumption that $x, x_1 \in \partial D$.

It immediately follows that $\kappa_D(x) \ge 0$, since the total angle at x in D must be at least π .

Reference

 G. Fejes Tóth, Problem 12b, Discrete Geometry Tagungsbericht 20/1997, Math. Forschungsinstititut Oberwolfach.

[2] H. Busemann, The geometry of geodesics, Academic Press, New York (1955).

Chaim Goodman-Strauss Dept. of Mathematics University of Arkansas Fayetteville, AR 72701 U.S.A.

strauss@uark.edu