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Abstract: We consider a question of G. Fejes Tóth, whether the boundary of a

convex body can be the union of three geodesic disks with disjoint interior.
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Figure 1: A geodesic disk

We are motivated by the following definition and question of G. Fejes
Tóth [1]:

A geodesic disk (Figure 1) is a piecewise smooth disk D embedded in
R

3 such that there exist a center c ∈ D, and radius r ∈ R, r > 0, with
(a) for all x ∈ ∂D, d(x, c) = r and
(b) for all x ∈ int(D), d(x, c) < r,

where d is the extrinsic metric on D (i.e. distance measured along shortest
geodesics on D) and where a surface, possibly with boundary, is piecewise
smooth if it is the union of C2 surfaces, with disjoint interiors and piecewise
C2 boundaries.

Question: Does there exist a convex body in R
3 such that ∂B is the union

of three geodesic disks with disjoint interiors.

We will show, as a corollary to a more general theorem, that the answer
is no, at least under the reasonable assumption that the convex body is
piecewise smooth.

Let F be a compact piecewise smooth surface, possibly with boundary,
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embedded in R
3. For any point x on F we define the local excess curva-

ture κF (x) of F at x as follows: Since F is piecewise smooth, for x ∈ F , x
is incident to some finite collection {Fi} of smooth subsets of F . Each TxFi

is a sector of a plane centered at x with angle measure ai. Then for x ∈ ∂F ,
we define κF (x) as:

κF (x) := (Σai) − π

And for x ∈ int(F), we define κF (x) as:

κF (x) := (Σai) − 2π

If x /∈ F , define κF (x) = 0.
Let F be a compact piecewise smooth surface, embedded in R

3 that is
the finite union of geodesic disks Di with disjoint interiors. Consider the set
V of vertices of the graph Γ = F \ ∪ int(Di) and define

κ(F) :=
∑

x∈V

κF (x)

Theorem 1 Suppose a compact piecewise smooth surface F , possibly with

boundary, embedded in R
3, is the union of n geodesic disks with disjoint

interiors. Then κ(F) ≥ 2π(n − χ(F)).

This immediately gives:

Corollary 2 Let B be a convex body in R
3 with piecewise smooth boundary.

Then ∂B cannot be the union of more than two geodesic disks with disjoint

interiors.

This follows immediately from the observation that if B is convex, then
κ∂B(x) ≤ 0 for all x ∈ ∂B and that ∂B must be a topological sphere.
Consequently if ∂B is the union of n geodesic disks with disjoint interiors,
0 ≥ 2π(n − 2) and so n ≤ 2.

Corollary 3 Let F be a smooth surface, possibly with boundary, embedded

in R
3 such that F is the union of n geodesic disks with disjoint interiors.

Then either F is a topological sphere and n = 2, or F is itself a geodesic

disk and n = 1.

This follows immediately from the observation that if F is smooth,
κ(x) = 0 for all x ∈ F . Hence n = χ(F). Finally, χ ≤ 2 and n > 0,
and so χ = n = 1, 2.
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The theorem follows quickly from the following lemma:

Lemma 4 Let D be a geodesic disk. Then for all x ∈ ∂D, κD(x) ≥ 0

We will show that the theorem follows from the lemma, and then prove
the lemma.

Proof of Theorem 1: Let F be a compact piecewise smooth surface,
possibly with boundary, embedded in R

3, such that F is the union of n
geodesic disks Di. Let Γ = F \ ∪Di, the finite graph of the boundaries
between these disks. The complement of Γ has n components. Let V be the
set of vertices of Γ; let v, e be the number of vertices, edges of Γ. For every
x ∈ V, let qx be the number of edges of Γ meeting x. Of course qx ≥ 2 and
so the lemma gives, for all x ∈ V,

κ(x) > qxπ − 2π

( Note that this holds whether x is on the boundary or in the interior of F .)
Thus:

∑

x∈V

κF (x) ≥
∑

x∈V

(qxπ − 2π)

= 2π(e − v)

= 2π(n − χ(F))

We now turn to the proof of the lemma.

Proof of Lemma 4: Let D be a geodesic disk with center c and radius r.
Since D is piecewise smooth, we can linearly approximate to arbitrary degree
a sufficiently small neighborhood of x ∈ D. In particular, in a sufficiently
small neighborhood of x, D is arbitrarily close to the union of flat sectors
with apex at x, and geodesics are arbitrarily close to straight lines.

Let x ∈ ∂D and let γ : [0, r] → D be the path of shortest length from c
to x. Let λ be a portion of the boundary of D on either side of x. Then we
claim that the angle between λ and γ in D at x must be at least π/2.

For if not, let x1 be a point very near to x on λ. Take a geodesic
perpendicular to ∂D, meeting x1, and passing through γ, at some point a
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Figure 2: A contradiction arises if the angle between γ and λ is not at least
π/2

(Figure 2). Now for x1 sufficiently close to x, d(a, x1) < d(a, x) whence:

d(c, x1) ≤ d(c, a) + d(a, x1)

< d(c, a) + d(a, x)

= d(c, x)

Thus, d(c, x) 6= d(c, x1), which contradicts the assumption that x, x1 ∈ ∂D.
It immediately follows that κD(x) ≥ 0, since the total angle at x in D

must be at least π.

Reference
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