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Abstract: We consider a question of G. Fejes Toth, whether the boundary of a
convex body can be the union of three geodesic disks with disjoint interior.

AMS Subject Classification (2000): 53C99, 52A15, 52C20

Key words and phrases: Geodesic disk, convex body.

Figure 1: A geodesic disk

We are motivated by the following definition and question of G. Fejes
Té6th [1]:

A geodesic disk (Figure 1) is a piecewise smooth disk D embedded in
R3 such that there exist a center ¢ € D, and radius r € R, r > 0, with

(a) for all x € 9D, d(x,c) = r and

(b) for all z € nt(D), d(z,c) < r,
where d is the extrinsic metric on D (i.e. distance measured along shortest
geodesics on D) and where a surface, possibly with boundary, is piecewise
smooth if it is the union of C? surfaces, with disjoint interiors and piecewise
C? boundaries.

Question: Does there exist a convex body in R? such that OB is the union
of three geodesic disks with disjoint interiors.

We will show, as a corollary to a more general theorem, that the answer
is no, at least under the reasonable assumption that the convex body is

piecewise smooth.

Let F be a compact piecewise smooth surface, possibly with boundary,



embedded in R3. For any point  on F we define the local excess curva-
ture kx(x) of F at x as follows: Since F is piecewise smooth, for z € F, z
is incident to some finite collection {F;} of smooth subsets of F. Each T,F;
is a sector of a plane centered at x with angle measure a;. Then for x € dF,
we define kr(x) as:

kr(z) = (Ba;) —
And for z € int(F), we define kr(x) as:

kr(x) = (Ba;) — 2w

If © ¢ F, define kr(x) = 0.

Let F be a compact piecewise smooth surface, embedded in R? that is
the finite union of geodesic disks D; with disjoint interiors. Consider the set
V of vertices of the graph I' = F \ U int(D;) and define

K(F) = Z kF(x)
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Theorem 1 Suppose a compact piecewise smooth surface F, possibly with
boundary, embedded in R®, is the union of n geodesic disks with disjoint
interiors. Then k(F) > 2m(n — x(F)).

This immediately gives:

Corollary 2 Let B be a convex body in R® with piecewise smooth boundary.
Then OB cannot be the union of more than two geodesic disks with disjoint
nteriors.

This follows immediately from the observation that if B is convex, then
kop(z) < 0 for all x € OB and that B must be a topological sphere.
Consequently if OB is the union of n geodesic disks with disjoint interiors,
0>2nm(n—2) and son <2.

Corollary 3 Let F be a smooth surface, possibly with boundary, embedded
in R3 such that F is the union of n geodesic disks with disjoint interiors.
Then either F is a topological sphere and n = 2, or F is itself a geodesic
disk and n = 1.

This follows immediately from the observation that if F is smooth,
k(z) = 0 for all x € F. Hence n = x(F). Finally, x < 2 and n > 0,
and so xy =n=1,2.



The theorem follows quickly from the following lemma:
Lemma 4 Let D be a geodesic disk. Then for all x € 0D, kp(z) >0

We will show that the theorem follows from the lemma, and then prove
the lemma.

Proof of Theorem 1: Let F be a compact piecewise smooth surface,
possibly with boundary, embedded in R3, such that F is the union of n
geodesic disks D;. Let I' = F \ UD;, the finite graph of the boundaries
between these disks. The complement of I' has n components. Let V be the
set of vertices of I'; let v, e be the number of vertices, edges of I'. For every
x €V, let ¢, be the number of edges of I' meeting x. Of course ¢, > 2 and
so the lemma gives, for all x € V,

k() > qum — 27

( Note that this holds whether z is on the boundary or in the interior of F.)
Thus:

Sowr@) =Y (am—2m)

eV zeV
27(e — v)
= 2n(n—x(F))

We now turn to the proof of the lemma.

Proof of Lemma 4: Let D be a geodesic disk with center ¢ and radius r.
Since D is piecewise smooth, we can linearly approximate to arbitrary degree
a sufficiently small neighborhood of z € D. In particular, in a sufficiently
small neighborhood of z, D is arbitrarily close to the union of flat sectors
with apex at z, and geodesics are arbitrarily close to straight lines.

Let z € 0D and let v : [0,7] — D be the path of shortest length from ¢
to z. Let X\ be a portion of the boundary of D on either side of z. Then we
claim that the angle between A\ and v in D at z must be at least 7 /2.

For if not, let x1; be a point very near to x on A. Take a geodesic
perpendicular to 0D, meeting z1, and passing through 7, at some point a



Figure 2: A contradiction arises if the angle between v and A is not at least
/2

(Figure 2). Now for 7 sufficiently close to x, d(a,z1) < d(a,x) whence:

d(c,x1) < d(c,a)+d(a,zq)
< d(c,a) +d(a,x)
= d(C, )
Thus, d(c,x) # d(c,x1), which contradicts the assumption that z,x; € dD.

It immediately follows that kp(z) > 0, since the total angle at z in D
must be at least 7.
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