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Affine configurations of 4 lines in RRR
3

By

Jorge L. Arocha, Javier Bracho, Chaim Goodman-Strauss and Luis Montejano

Abstract. We prove that affine configurations of 4 lines in R
3 are topologically and combina-

torially homeomorphic to affine configurations of 6 points in R
4.

1. Introduction. Consider four lines �1, �2, �3, �4 in 3-dimensional space R
3; their

affine configuration is their equivalence class under the natural (diagonal) action of the affine
group Aff(3). We say that their directions are in general position if their corresponding four
points at infinity are in general position in the projective plane P

2. We say that they fix R
3

(or that their affine configuration fixes R
3) if the only affine isomorphism that fixes them,

as sets, is the identity (i.e., they lie on a free orbit of the action) –it is easy to see that four
lines with directions in general position fix R

3 if and only if they are not concurrent.
The purpose of this paper is to describe the space, which we denote A

3
4,1, of affine config-

urations of four lines in R
3 that fix and have directions in general position. Topologically,

it is the 4 dimensional projective space P
4, but furthermore, it has the polyhedral struc-

ture of the space of affine configurations of 6 points in R
4. The combinatorial structure, or

decomposition, of A
3
4,1 arises naturally from the fact that there is a clear notion of degen-

eracy: configurations where some of the lines meet. So that we can say that two affine
configurations of lines are equivalent if they have the same meeting pattern (a set of pairs of
meeting lines) and one representative may be continuously moved to the other without ever
changing that pattern. We will prove that these equivalence classes are cells (in fact, the
interior of products of simplices) corresponding to the Radon partitions of the six possible
pairs of the (four) indices.

An affine configuration of points is an affine equivalence class of k points in R
n that

affinely generate it; the space of such is denoted A
n
k,0. Following the ideas of [3] for vector
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configurations, these spaces are seen to be grassmannians –namely, A
n
k,0 = G(k−1−n, n):

the grassmannian of (k − n − 1) dimensional subspaces of R
k−1. They come with a

natural stratification given, again, by the notion of degeneracy, with “cells” corresponding
to oriented matroids. In this context, the present paper studies one of the first examples of
their natural generalization to spaces of configurations of flats of dimensions other than 0.
It is remarkable that A

3
4,1 is again a grassmannian because the space of 4 different lines

that fix the plane R
2 (modulo the affine group Aff(2), of course) which we call A

2
4,1 is the

surface of non-oriented genus 5 with combinatorial symmetry group S5 [1].

2. The homeomorphism A
3
4,1 � A

1
6,0A

3
4,1 � A

1
6,0A

3
4,1 � A

1
6,0. Let �1, �2, �3, �4 be four lines in R

3 with
respective directional vectors d1, . . . , d4 in general position. We then have a non trivial
linear relation

∑
µidi = 0 with µi �= 0 for all i (if otherwise, three of the points at infinity

would be colinear), which is unique up to a constant non-zero factor. Then, rescaling the
directions (di := µidi), we may assume that

4∑
i=1

di = 0

in which case we say that they are normalized. Now, we associate to each pair of lines
�i, �j a number λij which, in a sense, measures the distance between them.

To fix ideas, consider the lines �1, �2. It is easy to see that there are unique segments
with directions d3 and d4 and endpoints in �1 and �2; call them σ 12

3 and σ 12
4 accordingly

(Figure 1). These segments together with the segments within �1 and �2 between their

endpoints form a quadrilateral, which, walked around, clearly gives a relation
4∑

i=1
αidi = 0.

Since the directions di are normalized, then all the coefficients (αi) are equal, to λ12 say.

F i g u r e 1.

We then have that, as a vector, σ 12
3 = λ12d3, and similarly σ 12

4 = λ12d4. Observe that λ12
is well defined up to sign, because walking around the quadrilateral in the opposite direction
simply changes its sign. The two directions correspond to choosing one of the cyclic orders
1324 or 1423 indicating the order of (the directions of) the segments in the quadrilateral.
Observe also that this procedure analogously gives λij for the six pairs of indices in the set
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�4 := {1, 2, 3, 4}. So that we are left to give a rule for choosing orientations to eliminate
the ambiguity in the signs of λij.

The natural rule follows from fixing an orientation of the tetrahedron � with vertices �4
(let us establish 432 as the positive cyclic orientation around vertex 1 as in Figure 2). Then,
for the edge ij choose the positive orientation of the quadrilateral of which it is a diagonal
(e.g., for the edge 12 we must choose the cyclic order 1324).

F i g u r e 2.

Before proceeding, let us precise our notation for later use. The segments σ
jk
i are now

oriented. They go from �j to �k having direction di and, abusing notation that forgets the
starting point in �j , we may write

σ
jk
i = λjk di

where, moreover, the triangle ijk of � has orientation jik. Thus, according to our conven-
tions, we should rewrite σ 21

4 instead of the previously used σ 12
4 . Observe also that λij = λji

because our subindices for λ are understood unordered, but not the indices for σ .
We have associated six numbers λij ∈ R to a configuration �1, �2, �3, �4 depending on the

choice of a normalized set of directions. Since these are defined up to a non-zero constant
factor, so are the λij. Observe that

λij = 0 ⇔ �i ∩ �j �= ∅
so that all the λij are zero if and only if the four lines are concurrent (since their directions are
in general position, if three of them meet by pairs then they are concurrent). Therefore, if
�1, �2, �3, �4 fix R

3 we have a well defined point [λij] ∈ P
5, which, moreover, only depends

on the affine configuration. To see this, observe that a translation does not change the λij

and that a linear map sends a normalized set of directions to a corresponding normalized
set of directions so that it does not change them either. Summarizing, we have defined a
map

A
3
4,1 → P

5

[�1, . . . , �4] �→ [λij]

which, as we will now see, is really a map to a hyperplane (P4).

Lemma 1. Let λij correspond to the lines �1, . . . , �4 with normalized directions
d1, . . . , d4 as above. Then∑

λij = 0

where the sum is taken over the six pairs of �4 = {1, 2, 3, 4}.
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P r o o f. According to our orientation convention, we have defined three oriented
segments with direction d1, namely σ 23

1 , σ 34
1 , σ 42

1 , which join the lines �2, �3, �4 in that
cyclic order. Therefore, intercalating segments on the lines �3, �4, �2 we get an oriented
hexagon, which traversed orientedly yields, for some β2, β3, β4 ∈ R, a relation

λ23 d1 + β3 d3 + λ34 d1 + β4 d4 + λ42 d1 + β2 d2 = 0(1)

Because the directions are normalized, this implies that

β2 = β3 = β4 = λ23 + λ34 + λ42 =: γ1

This can clearly be done for any i ∈ �4, yielding that the segment in �j from the endpoint

of σ
kj
i to the starting point of σ

jr
i is precisely γidj , where

γi := λjk + λkr + λrj with {i, j, k, r} = �4.

Now we have enough measures between the six points defined as endpoints of the seg-
ments σ

jk
i in any given line. In �1 for example, we know the distances between consecutive

�1-endpoints of the segments σ 31
2 , σ 14

2 , σ 41
3 , σ 12

3 , σ 21
4 , σ 13

4 which, preserving that cyclic
order, yields the relation

(γ2 − λ14 + γ3 − λ12 + γ4 − λ13) d1 = 0(2)

from which the Lemma follows directly by the definition of γi . �

F i g u r e 3.

The preceding construction and proof implicitly uses the combinatorial structure of the
truncated octahedron. In Figure 3, the different styles of directed edges correspond to the
four directions; the coefficients of the vectors used in the proof appear respectively as labels
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of the quadrilaterals or the edges. The hexagons with only one type of edge lie within the
lines; they give equations of type (2) at the end of the proof. The edges between these
hexagons correspond to the segments σ

kj
i and they group in the quadrilaterals that defined

the λ’s. The other type of hexagons were used to define the γ ’s and give equations of
type (1).

We must finally remark that the map A
3
4,1 → P

4 we have defined is a homeomorphism.
To see this, observe that if the six λij, adding zero, are given, one can construct the lines.
Fix one of them with an arbitrary base point. Then, enough geometric information is given
by the coefficients to know where on the line precisely defined segments should go to the
other three lines. The linear condition, and Figure 3 imply that the result is independent of
the choices.

3. Duality of affine configurations of points. Two affine configurations of points are
dual if they are the orthogonal projections of (the vertices of) the standard regular simplex
to a pair of orthogonal complementary subspaces; where the standard regular simplex has
all vertices equidistant. We will see that duality gives a homeomorphism

A
n
k,0 ←→ A

k−n−1
k,0

and characterize it completely for the case n = 1. The basic ideas come from the classic
duality of matroids and vector configurations [4], see also [3].

Consider an affine configuration of k points in dimension n, p ∈ A
n
k,0. It is represented

by points p1, . . . , pk ∈ R
n (written, p = [p1, . . . , pk]) such that they affinely generate

R
n. Since their barycenter

∑
(1/k)pi is a well defined affine invariant, we may translate it

to the origin and assume that p1, . . . , pk is centered, that is, that

k∑
i=1

pi = 0.

Observe that choosing centered configurations leaves our ambiguity in the general linear
group Gl(n), that is,

A
n
k,0 =

{
p1, . . . , pk ∈ R

n

∣∣∣∣ p1, . . . , pklinearly generateR
n,∑

pi = 0

}
/ Gl(n).

Given p = [p1, . . . , pk] ∈ A
n
k,0 as above, we have a linear map ϕp : R

k → R
n defined

by ϕ(ei) = pi , where e1, . . . , ek is the canonical basis of R
k . It is unto by hypothesis, so

that ξ ′p := Ker(ϕp) is a subspace of dimension k − n (this is the subspace associated to
the vector configuration). Observe that ξ ′p does not depend on our choice of the centered
representative p1, . . . , pk of p, because ϕp followed by a linear isomorphism has the same
kernel. Observe also that from ξ ′p one can obtain p, because the image of the canonical

basis in R
k/ξ ′p (isomorphic via ϕp to R

n) is linearly equivalent to p1, . . . , pk .
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Let 1 = (1, . . . , 1) =∑ ei , and let 
 be its normal hyperplane defined by 1 · x = 0. Let
v1, . . . , vk be the orthogonal projection of e1, . . . , ek to 
 (namely, vi = ei − (1/k)1), so
that v1, . . . , vk are the vertices of a standard regular simplex in 
. Because p1, . . . , pk is
centered, then 1 ∈ ξ ′p, so that ξp := 
 ∩ ξ ′p, which is a subspace of dimension k − n − 1
of the (k − 1)-dimensional space 
, has all the information to recover p. Indeed, p is
equivalent to the image of v1, . . . , vk in 
/ξp � R

n.
Let q1, . . . , qk be, respectively, the (orthogonal) projections of v1, . . . , vk (or e1, . . . , ek)

to ξp, and let q ∈ A
k−n−1
k,0 be the corresponding affine configuration. By construction,

ξp and ξq (defined analogously for q) are orthogonal complementary subspaces of 


(� R
k−1) and the projection of the standard regular simplex v1, . . . , vk to them gives,

respectively, the affine configurations q and p (because we can identify 
/ξp = ξq). So
they are dual. We can summarize by saying that both A

n
k,0 and A

k−n−1
k,0 are naturally

homeomorphic to the grassmannians G(k − n − 1, n) and G(n, k − n − 1) with duality
corresponding to orthogonal complementation. In the case that interests us (n = 1), duality
can be characterized more explicitly.

Theorem 2. Let λ1, . . . , λk be a centered affine configuration in R
1 and

p = [p1, . . . , pk] an affine configuration in R
k−2. Then they are dual if and only if

k∑
i=1

λipi = 0.(3)

P r o o f. Because multiplication by non zero constant factors does not affect the affine
configuration or the equation, we may assume that λ1, . . . , λk is normalized, i.e., that∑

λ2
i = 1; so that λ := (λ1, . . . , λk) ∈ R

k is well defined up to sign.
Let ξ[λ] be the (k − 2)-dimensional subspace of 
 defined as above, and q1, . . . , qk

the (orthogonal) projections to ξ[λ] of v1, . . . , vk respectively; so that [λ] ∈ A
1
k,0 and

q := [q1, . . . , qk] ∈ A
k−2
k,0 are dual. Observe that λ ∈ 
 (by the centered hypothesis) and

that the defining map for ξ[λ] (ei �→ λi) is precisely x �→ x ·λ, so that ξ[λ] is the orthogonal
hyperplane to λ in 
. Then, it is easy to see that

qi = ei − (1/k)1− λi λ(4)

where one uses that λ is normalized. Therefore,

k∑
i=1

λi qi = λ− (1/k)

(
k∑

i=1

λi

)
1−

(
k∑

i=1

λ2
i

)
λ = 0

because λ1, . . . , λk is centered and normalized; proving the only if side.
Suppose now that p = [p1, . . . pk] ∈ A

k−2
k,0 satisfies the relation (3). Then λ ∈ ξp and

moreover, ξp is the line generated by λ. By equation (4) λiλ is the orthogonal projection
of vi to ξp. So that λ1, . . . , λk represent the dual configuration to p. �
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4. The Radon Complex. We have proved that A
3
4,1 is homeomorphic to P

4 which is

naturally identified with A
1
6,0 and then to A

4
6,0 by duality. Now we see that its combina-

torial structure corresponds to the latter, which is intimately related to the classic Radon’s
Theorem.

Let p = [p1, . . . , pk] ∈ A
k−2
k,0 and λ = [λ1, . . . , λk] ∈ A

1
k,0 be dual (related as

in Theorem 2 with λ1, . . . , λk centered). Then we have a partition of the index set
�k := {1, . . . , k} into three components

A = {i | λi > 0}; B = {i | λi < 0}; C = {i | λi = 0}

with A and B non-void, which is called the Radon partition of the configuration p. Radon’s
Theorem states that the interiors of the simplices 〈pi | i ∈ A〉 and 〈pi | i ∈ B〉 intersect. It is
obtained by changing the relation (3) into an equality of barycentric (convex) combinations
in the obvious way. All the configurations with the same Radon partition A;B;C can
then be parametrized by the product of the interiors of the two abstract simplices 〈A〉
and 〈B〉 using the barycentric coordinates of the intersection point; giving the natural cell
decomposition of A

k−2
k,0 which we call the Radon complex. Two configurations in the same

cell (with the same Radon partition) can be joined by a path of configurations of the same
type (the geodesic in P

k−2). Configurations in general position are exactly those for which
C = ∅, thus, the Radon complex is obtained by chopping P

k−2 by the k hyperplanes λi = 0,
in which the configurations (p) have some degeneracy. See [2].

Returning to the affine configurations of four lines in R
3, A

3
4,1, we associated to such

a configuration �1, . . . , �4 a centered configuration of six points in the line [λij] ∈ A
1
6,0

in such a way that the degeneracy “�i meets �j ” corresponds to λij = 0. Thus, the
combinatorial structure of A

3
4,1 corresponds by duality to that of the Radon complex

A
4
6,0; with open cells the product of open simplices and with two configurations of lines

being combinatorially equivalent if they can be moved from one to the other without
changing the intersection pattern of the lines. For each Radon partition of the six pairs
ij, consisting of the pairs that have positive, negative and zero distance, there is one
cell.

We have proved the following theorem.

Theorem 3. There is a stratified homeomorphism (preserving degeneracies) between the
space A

3
4,1 of affine configurations of 4 lines in R

3 and the space A
4
6,0 of affine configurations

of 6 points in R
4.
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