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Introduction

Substitution tilings have been discussed now for at least twenty-five years,
initially motivated by the construction of hierarchical non-periodic structures
in the Euclidean plane [?, ?, ?, ?]. Aperiodic sets of tiles were often created
by forcing these structures to emerge. Recently, this line was more or less
completed, with the demonstration that (essentially) every substitution tiling
gives rise to an aperiodic set of tiles [?].

Thurston and then Kenyon have given remarkable characterizations of self-
similar tilings, a very closely related notion, in algebraic terms [?, ?]. The
dynamics of a species of substitution tilings under the substitution map has
been extensively studied [?, ?, ?, ?, ?].

However, to a large degree, a great deal of detailed, local structure appears
to have been overlooked. The approach we outline here is to view the tilings in
a substitution species as realizations of some algorithmicly derived language—
in much the same way one can view a group’s elements as strings of symbols
representing its generators, modulo various relations.

This vague philosophical statement may become clearer through a quick
discussion of how substitution tilings have often been viewed and defined, com-
pared to our approach. The real utility of addressing, however, is that we can
provide detailed and explicit descriptions of structures in substitution tilings.

Figure 1: A typical substitution

We begin with a rough heuristic description of a substitution tiling (formal
definitions will follow below): One starts in affine space Rn with a finite col-
lection T of prototiles,1, a group G of isometries to move prototiles about, an

1In the most general context, we need assume little about the topology or geometry of the
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expanding affine map σ and a map σ′ from prototiles to tilings– substitution
rules. These substitution rules specify how to map each prototile to a tiling of
its image under σ.

For example, in figure ?? we have a single prototile– the L-tile or chair tile
[?, ?]– residing in the plane. Our inflation σ simply scales all distances by a
factor of 2. Our replacement rule takes the inflated L-tile and replaces it with
four images of the L-tile as shown. On the right is a portion of a tiling that
clearly, in some sense, deserves to be called a “substitution tiling”, derived from
this substitution.

A substitution tiling given by T ,σ and σ′ is often described as the result of
repeatedly iterating the two steps “inflate” and then “subdivide”. This certainly
is intuitively clear, and one can easily define supertiles— the result of finitely
many iterations. Two points must be made, however. First, unless one takes
some care, this process has no limit; generically, patches of tiles are not stable
under inflation. That is, although a given patch’s image under inflation typically
often contains a congruent copy of the patch, it very rarely contains the patch
itself. We precisely characterize this in Section ??.

Second, being able to tile supertiles of arbitrary size does imply the plane can
be tiled, but one has to appeal to a somewhat opaque argument (eg. Theorem
3.8.1 of [?]). Moreover, from this description, it is not at all clear how the entire
species of tilings arising from T ,σ and σ′ should be defined.

The usual formal description of the species is quite elegant, but reveals its
structure reluctantly. A tiling τ of X with images of prototiles in T is an element
of the substitution species Σ(T, σ′) if and only if every bounded set in τ is the
image of a bounded subset of some supertile, as described above. This certainly
is well defined, but even simple properties– such as not being vacant— of these
species often require involved proof.

We proceed as follows. Instead of inflating tiles and expecting a limit, we
simply construct “addresses”— essentially the position of tile with respect to a
hierarchy of supertiles containing it. We begin by identifying a set of symbols
S not with the prototiles, but with the tiles in the images of the prototiles
under substitution. The elements of S can be thought of as the prototiles
with additional information attached— the identity and relative position of the
prototiles “parent”.

Thus, we can build infinitely large configurations of tiles as follows: begin
with a tile, specify its parent, specify that supertile’s parent, etc. Eventually
one has an infinite hierarchy of supertiles— an infinite-level supertile.

tiles, the nature of the geometry of the space,etc. Some of these issues are discussed in Section

??
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For example, in Figure ??, S has four elements, denoted a, b, c, d. At right,
a portion of an infinite-level supertile is being built up; a tile is assigned some
address . . . cbda• indicating that the tile itself is in position a with respect to
its parent; the parent is in position d with respect to the tile’s grandparent;
etc. (This is unambiguous once the specific isometries used to assemble the
diagram on the left of Figure ?? are specified— here we use only translations and
rotations). Note that the limit of this description— an infinite-level supertile—
is perfectly well-defined.

Figure 2: Addressing supertiles

Note that the infinite-level supertile can be described from any initial tile
within it— thus these supertiles really correspond to equivalence classes of ad-
dresses (essentially, two addresses give rise to the same infinite-level supertile if
and only if they agree in all but finitely many digits), and addresses of the sort
in the example above correspond to positions of tiles within infinite-level super-
tiles. In Figure ??, addresses are given for a number of tiles in the supertiles
shown. The full addresses of these tiles will all agree to the left of the fourth
digit shown.

Several points need be made: First, infinite-level supertiles are inextricably
bound to these addresses. Consequently, the construction of the infinite-level
supertiles is explicit and the set of infinite-level supertiles can be explicitly
understood, at least to roughly the same extent as the real numbers can be
explicitly understood.

Second, note that the addresses are algorithmically generated, and in fact
the substitution graph (Section ??) is the finite state automaton that generates
the addresses of infinite-level supertiles.

Third, if an infinite-level supertile covers R
n, it is a substitution tiling, us-

ing the standard definition given above. Moreover— though this takes detailed
proof— every substitution tiling can be assembled from infinite-level supertiles.
In fact, under any G-invariant probability measure on a given species of substi-
tution tilings, the set of substitution tilings that consist of a single infinite-level
supertile has measure 1! (Section ??; also: [?, ?, ?])

Fourth, we can construct an explicit relation that exactly describes if two
infinite-supertiles belong together in some substitution tiling. Up to fairly sharp
conditions, we can produce two automata: one that can check whether two
addresses are related in this fashion, and one that produces all addresses of
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infinite-level supertiles incident to the infinite-level supertile given by a given
address.

There is a strong analogy to the real numbers themselves. We have no
trouble checking that the numbers 9999 and 10000 are adjacent. In similar
fashion, we can construct an automaton that can verify, for example, that the
tiles bcbc, cdbd, bccd, cddc in Figure ?? all meet one another.

Figure 3: Addressing tiles in a supertile

This structure may have practical uses; often one constructs grids to carry
out numerical simulations. For various reasons, one may want a grid that is
irregular in some fashion. These hierarchical grids require less memory to store
(especially give the techniques of Section ??) as one does not need pointers
between adjacent addresses (on the other hand, finding adjacencies each time
they are needed obviously carries some computational cost.)

This paper is divided into three main parts:

First in Section ?? we give definitions of substitution tilings, substitution
graphs, etc. In Section ?? we define addresses, labelings, etc.

Second, in Section ?? we show infinite-level supertiles actually are closely
related to substitution tilings, proving for example that every substitution tiling
is the union of infinite level supertiles with disjoint interiors. We give character-
izations, in terms of addresses, of familiar properties of substitution species—
being non-vacant, having unique decomposition, having connected hierarchy,
being repetitive and being strongly repetitive.

Finally, in the following sections we give three interesting applications of
addresses:

1. In Section ?? we give a method of producing explicit and detailed descrip-
tions of orbits in any substitution species,

2. In Section ?? we show how to produce automatic descriptions of adjacen-
cies of tiles, supertiles, and infinite-level supertiles, etc.

3. and finally in Section ?? we show how to encode infinite addresses with
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locally-finite information, a technique at the heart of the recent production
of matching rules enforcing every substitution species [?].

In a future paper or papers, we hope to give further applications:

1. We will derive a close relationship between mutually decomposable species
of substitution tilings and automatic translations between their underlying
addresses

2. We will show a interesting trick for visualizing certain “palindromic”
species of substitution tilings

3. We will develop a series of interesting parallels between geometric groups,
subgroups, perfect colorings, group graphs and free groups into the setting
of semigroups realized as substitution tilings.

4. Finally, we hope in the future to fully understand the following conjecture:

Conjecture Up to some sort of reasonable conditions, the abstract structure
given by a set of addresses A and equivalences ≈ completely determines the
geometry of a substitution tiling and the ambient space in which it resides.

1 The Setting

1.1 Substitution Tilings

The general setting is much broader than that taken here. We actually need
only a few key assumptions, discussed in more detail in Section ??. For now
these assumptions are subsumed into the current setting.

Let M = R
n, real affine space, endowed with the usual metric and usual

measure µ; let G be some group of measure-preserving affine transformations ?

on M , with identity e.
The following term is adapted from geometric topology: this needs work!

Definition 1.1.1 A point set A in a measurable metric space is tame iff A is
measurable and closed, has interior with non-zero measure and boundary with
zero measure, and all points in the boundary of A are limit points of the interior
of A.
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?

Definition 1.1.2 Let T be a finite set of prototiles— bounded, tame sets in
M .

Remarks 1.1.3 The exact conditions we need on the elements of T are
somewhat unclear. Certainly smooth or piecewise-flat complexes are perfectly
fine, as are tiles with fractal boundary, etc.

We may assume without loss of generality that the elements of T are mutu-
ally disjoint in M . We do not assume that no pair of elements of T are congruent
(this allows many interesting examples and has negative repercussions only in
Section ??). Note that the prototiles have finite measure since compact.

We may wish to “mark” our prototiles by mapping the points in the tiles to
some space of markings. A formal description of markings is given in Appendix
C of [?]; all of the following applies whether markings are used or not, and for
now further mention of markings will be suppressed; if markings are used, we
will say two tiles are congruent only if there is an element of G taking the points
and the markings of one tile to the other.

Definition 1.1.4 Tiles will be the images of prototiles under G. A tiling

of any M ′ ⊆ M , is a representation of M ′ as the union of tiles with disjoint
interiors.

Convention 1.1.5 Both tiles and tilings are sets of (perhaps marked) points
in M . The symbols =, ⊂, ∪, ∩ etc. will take on additional meaning when
applied to tiles and tilings. For tilings τ1, τ2, when we we write, say, τ1 ⊂ τ2 not
only are we implying that the points in τ1 are among the points in τ2, but that
every tile in τ1 exactly coincides with a tile in τ2. Similarly, for a collection of
tiles or tilings τi, when we write ∪iτi we imply that this union is also a tiling–
no pair of tiles in this union have intersecting interiors.

We thus (awkwardly) denote a tiling of M ′ as ∪giBi, with the understanding
that each gi ∈ G, each Bi ∈ T and the giBi have disjoint interiors and M ′ =
∪giBi.

Remark 1.1.6 Note that tiles and tilings are tame and that tiles are bounded
and have finite measure since bounded and closed. Note also that we have de-
fined tilings in such a way to include what are commonly called “configurations”
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as tilings of subsets of M .

Definition 1.1.7 Next, let σ be an inflation, any distance increasing affine
transformation from M to M , such that σ has a unique fixed point o— the
origin— and the cyclic group generated by σ is normal in < σ, G >, the sub-
group of all affine transformations from M to M generated by elements of G
and σ.

In particular, for all g ∈ G, for any integer n, there exists h ∈ G with
σng = hσn. 2

We define for each g ∈ G, a family {g(n) | n ∈ Z} ⊂ G such that g(0) = g
and σng = g(n)σn. It soon follows that, for all n, m ∈ Z:

σng(m) = g(n+m)σn

(g(m))(n) = g(n+m) = (g(n))(m) and
(gm)(n) = (g(n))m

Definition 1.1.8 A substitution is an automorphism σ′ on the set of tilings
of subsets of M by prototiles T under congruences G, such that for any tiling τ
of M ′, g ∈ G,

(i) σ′(τ) is a tiling of σ(M ′).
(ii) σ′(gτ) = g(1)σ′(τ)

Note by (ii) above, since σ defined on the prototiles themselves, that for
tilings τ1, τ2 such that τ1 ∪ τ2 is a tiling of some subset of M , we have σ′(τ1) ∪
σ′(τ2) = σ′(τ1 ∪ τ2).

For each A ∈ T , define appropriate {g
Ai
} ⊂ G and {BAi} ⊂ T in order to

set
σ′(A) := ∪g

Ai
BAi (1)

(This notation is improved in equation ?? below)

Remark 1.1.9 Without loss of generality, we assume the elements of T are
disjoint from each tile in each σ′(A). (This makes certain things nicer in defining

2This follows from normality as g, h are measure preserving and σ is not; for more general

G, we must explicitly give this as a condition on σ
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S below). Note that

µ(w(A) = µ(w′(A)) =
∑

g
Ai

BAi =
∑

BAi

Note we do not require every element of T to appear in some σ′(B), B ∈ T
as there are many useful examples that do not satisfy this seemingly minimal
requirement (See Theorem ??).

For any tile gA, g ∈ G, A ∈ T , we have, as a tiling of g(1)σ(A) = σ(gA):

σ′(gA) = g(1)σ′(A) = g(1)(∪g
Ai

BAi)

Definition 1.1.10 Given T and w′, for any A ∈ T , g ∈ G, n ∈ N we inductively
define n-level supertiles (σ′)n(A),(σ′)n(gA) as tilings of σn(A), σn(gA) resp
(see also equation ?? below):

(σ′)n(A) := (σ′)n−1(∪(g
Ai

BAi)) = ∪g
(n−1)

Ai
(σ′)n−1(BAi) (2)

Thus,

(σ′)n(gA) = g(n)(σ′)n−1(∪(g
Ai

BAi)) = g(n)(∪g
(n−1)

Ai
(σ′)n−1(BAi))

And now the the most important definition of all:

Definition 1.1.11 The substitution species Σ(T, σ′) of substitution tilings
arising from T , σ′ is the collection of tilings τ of M by images of elements of
T such that any bounded tiling in τ is congruent to tiling in some supertile
(σ′)n(A).

As discussed in our introduction, this certainly gives a nice local description
of a tiling in the species, but at this point, even to show the species is nonempty
requires work. We rectify this below, and ultimately give a complete global
description of the species. For example it is quite natural to wonder about the
orbits in Σ(T, σ′) under σ′; these are self-evident with addressing.

Example 1.1.12 We have one example in Figure ??; here is another (Figure
??). T consists of the three triangles shown σ could be regarded as some dilation
of magnitude s ≈ 1.324717957244746, the real root of s3 − s − 1 = 0. σ′ takes
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the elements of T to supertiles as shown. A small portion of a substitution tiling
in Σ(T, σ′) is at right.

Figure 4: A substitution on triangles

We pause for further useful definitions:

Definition 1.1.13 A tiling τ is periodic iff there exists g ∈ G such that
gτ = τ . A tiling is non-periodic iff it is not periodic. A species is aperiodic

iff every element of the species is non-periodic.

Aperiodic (species of) tilings have of course received great attention; eg.
[?, ?, ?, ?, ?, ?, ?, ?] etc., but are outside our focus at the moment.

Definition 1.1.14 A substitution species Σ(T, σ′) has unique decomposi-

tion iff for all τ ′ ∈ Σ(T, σ′), there exists unique τ such that σ′(τ) = τ ′.

That is, Σ(T, σ′) has unique decomposition if and only if σ′ is one-to-one on
Σ(T, σ′).

In Theorem ?? we explicitly prove that σ′ : Σ(T, σ′) → Σ(T, σ′) is onto.
It is easy to show that if there is a periodic tiling in Σ(T, σ′) then Σ(T, σ′)

does not have unique decomposition. Solomyak [?] showed that if G consists of
translations only, then if Σ(T, σ′) is aperiodic then Σ(T, σ′) has unique decom-
position. This author provided an example of an aperiodic Σ(T, σ′) that does
not have unique decomposition [?]. The general situation remains unclear.

Definition 1.1.15 A tiling τ ∈ Σ(T, σ′) has connected hierarchy iff for
all tiles g1A1, g2A2 ∈ τ , there exists a supertile g(σ′)n(A) in τ containing both
g1A1, g2A2. If a tiling does not have connected hierarchy it is useful to think of
“an infinite fault line” running through the tiling.

However, until we define addresses it is a hassle to prove each Σ(T, σ′) has
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both tilings with and without connected hierarchy, that infinite fault lines really
exist, as boundaries between infinitely large “supertiles”, much less to exploit
this to give a simple indexing of the elements of Σ(T, σ′) itself as we do below.
Incidentally, we do note that the subset of Σ(T, σ′) having connected hierarchy
has measure 1 in any translation invariant probability measure of Σ(T, σ) ([?],
Appendix C of [?]).

Definitions 1.1.16 A tiling tiling τ of M is repetitive if and only if for every
bounded tiling τ ′ within τ there exists an R ∈ R, R > 0 such that every ball of
radius R contains an image in G of τ ′ in τ .

A tiling τ of M is strongly repetitive ask Marjorie
if and only if for every r ∈ R, r > 0 there exists an R ∈ R, R > 0 such that

for every tiling τ ′, of diameter less than r, within τ , every ball of radius R in
M contains an image in G of τ ′ in τ .

A species Σ of tilings of M is repetitive if and only if for every bounded
tiling τ ′ within some τ ∈ Σ there exists an R ∈ R, R > 0 such that for every
τ ′′ ∈ Σ every ball of radius R contains an image in G of τ ′ in τ ′′.

A species Σ of tilings of M is strongly repetitive if and only if for every
r ∈ R, r > 0 there exists an R ∈ R, R > 0 such that for every bounded tiling
τ ′, of diameter less than r, within some τ ∈ Σ, for every τ ′′ ∈ Σ, every ball of
radius R contains an image in G of τ ′ in τ ′′.

We give simple, exact conditions under which each of these properties holds
in Theorem ??.

1.2 The Substitution Graph

Definition 1.2.1 It is useful to draw a substitution graph Γ(T, σ′), a
directed graph with nodes indexed by T : Each prototile is represented by a
node of the graph; if for A ∈ T , σ′(A) = ∪(g

Ai
BAi), then directed edges (arrows)

departing the node A are indexed by the tiles {g
Ai

BAi} and head towards the
nodes indexed {BAi}.

We call the set of tiles indexing the labeled arrows S (Note the elements of
S are in 1-1 correspondence with the arrows of Γ(T, σ′) by Remark ??). There
is a natural projection from S to T : for any A ∈ S, let AT ∈ T be the element
of T identified with the node at the head of S.

The following conventions are enormously useful. They should be interpreted
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by viewing the elements of S as elements of T who ”know their parents” (i.e.
identify each A ∈ S with AT ∈ T ; but keep in mind that an element of S has a
particular position with respect to some 1-level supertile– its “parent”.)

For A ∈ T , the collection of nodes at the tail end of arrows with head at
node A is denoted A− ⊂ T .

For A ∈ S, the single node at the tail end of arrow A is denoted A− ∈ T .
For A ∈ S, the single node at the head of arrow A is denoted AT ∈ T ;
Thus, for A ∈ T , A− = {B− | B ∈ S, BT = A}.
For A ∈ T , the collection of arrows departing node A is denoted A+ ⊂ S
For A ∈ S the collection of arrows departing node AT is denoted A+ ⊂ S.
That is, for A ∈ S, A+ = (AT )+.
Finally, for each B ∈ S, B = g

Ai
BAi for some i and A = B−. Let g

B
= g

Ai
,

and note that BAi = BT

For later convenience, for A ∈ T , let g
A

= e ∈ G and AT = A.

Our conventions allow us to restate equations ?? and ?? in much cleaner
form. We now have, for A ∈ T , n ≥ 1, g ∈ G:

σ′(A) :=
⋃

B∈A+

B =
⋃

B∈A+

gBBT (3)

and more generally,

(σ′)n(gA) := g(n)
⋃

B∈A+

g
(n−1)

B
(σ′)n−1(BT ) (4)

Example 1.2.2 We continue Example ??. At left on Figure ??, we have
labeled our prototiles T = {X, Y, Z} and S = {A, B, C, D, E}. At right the
substitution graph Γ(T, σ′) is shown. We have not really indicated the isometries
gA, gB, etc.

Note that we have, for example: Z = ZT = DT = CT Z+ =
{E, D} = D+ = C+ Z− = {Y, Z} but C− = Y and D− = Z.

Figure 5: A substitution graph
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We make the following elementary but important observations:

Lemma 1.2.3 Given T , σ′:
(i) Γ(T, σ′) has a finite number of nodes, and from each node at least one

arrow departs.
(ii) S is finite.
(iii) |S| > |T |

Proof (i) This follows trivially from the identification of the nodes of Γ(T, σ′)
with the elements of T and that σ′ is defined for each element of T .

(ii) Because each element A of T has defined, finite positive measure, and σ
and the elements of G are affine, σ(A) and the elements of A+ also have finite
positive measure. Hence there can be a most finitely many S.

(iii) By Remark ?? the elements of {σ(A) | A ∈ T } are disjoint; hence
|S| ≥ |T |. Now σ increases all distances and so increases measure. There exists
A ∈ T such that µ(A) ≥ µ(B) for all B ∈ T . µ(σ(A)) =

∑
B∈A+ µ(B) > µ(A′)

for all A′ ∈ T ; however, for each B ∈ A+, µ(B) = µ(A′) for some A′ ∈ T ; hence
|A+| > 1 and |S| > |T |.

2 Addresses

We now come to our central definition.

Definition 2.0.4 An address is a map A : Z → T ∪ S ∪ {�},
(i) � is a symbol having no previous connection to T or S.
(ii) There exists at most one k ∈ Z with A(k) ∈ T and at least one k ∈ Z

with A(k) ∈ T ∪ S.
(iii) For any k ∈ Z, if A(k) ∈ {�} ∪ T , A(k + 1) must equal �.
(iv) For any k ∈ Z, if A(k) ∈ T ∪ S, A(k − 1) must be an element of

A(k)+ ⊂ S

Let A be the set of all addresses admitted by Γ(T, σ′).

Remarks 2.0.5

For any k ∈ Z, if A(k) ∈ S, then A(k + 1) = �, or A(k + 1) = A(k)− ∈ T ,
or A(k + 1) ∈ S with A(k + 1)T = A(k)− ∈ T . If A(k) ∈ T , then A(k + 1) ∈ �.
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It is quite handy to have a good notational shorthand:

We might consider addresses as bi-infinite strings of digits in T , S, perhaps
with a leading infinite string of the special digit �.
To fix these strings relative to the integers, we write An for A(n) ∈ S ∪ T . The
subscript will always imply position.

Thus a typical string might be denoted A = An... We will generally drop
the symbol �; in an address represented by ...Ak... it is implicit that � does
not appear.

It is also useful to denote sets of addresses, and introduce a second special
character ?, representing all possible infinite strings on the right, eg:

An? = {A ∈ A | A(n) = An,A(k > n) = �}

and
...A0? = {A | A(n) = An ∀ n ≥ 0}

A? = {A ∈ A | ∃n s.t. for An = A,A = An?}
We will loosely refer to strings of this form as addresses as well.

For each n ∈ Z let

A
n = {An... ∈ A} = {A ∈ A | A(n) 6= � = A(n + 1)}

A
∞ = {...Ak...} = A − (∪nA

n)

.
We can use subscripts to denote sets of addresses described by ?; for example:

A
n
m = {An...Am? ⊂ A

n}

Am = ∪nA
n
m ∪ {...Am?}

When working with a specific example, as in Figure ??, Examples ?? and
??, subscripts become awkward. Suppose T = {X, Y }, S = {B, C, D}. The
string A = A2...A−1? does not give specific values for each An; but indicating
these values by, say, A = C2C1D0B−1? seems rather odd. In this case, rather
than using subscripts as above, we make use of a decimal point •, placed
immediately to the right of A(0), and write out the specific digits of A. Thus,
for example,

CCD•B? := {A2...A−1... | A2 = A1 = C, A0 = D, A−1 = B} ∈ A
2
−1
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We can also use the symbol ? to fix the position of digits a few places to the
left of •:

C?•? := {A1 . . . | A1 = C} ∈ A
1
1

Finally, for addresses built from repeating strings, we use a bar as when repre-
senting expansions of rational numbers:

C•DAB = C•DABABABAB . . .

ABCD•C? = . . . ABCABCABCD•C?

Definition 2.0.6 We define a shift ς : A → A by (ς(A))(n) = A(n − 1).

That is, ς literally shifts addresses (represented as strings as above) to the
left. Note, of course, ς is 1-1 and onto. As it should be, this operation is closely
linked to σ, as seen in equations ??, ??, ?? and ?? below.

2.1 Labeling points and tiles

Addresses are automatic– a given set A can essentially be regarded as a regular
language, a language described by an automaton. Indeed, the needed automa-
ton is closely related to the substitution graph Γ(T, σ′) itself. This is further
discussed in Section ??.

In the meantime, we describe how addresses can be used, first to identify
points in tiles and supertiles through (see Equation ??)

λ : ∪n∈Z A n
−∞ → M

In Section ??, we go on to identify tiles and supertiles in M through (see
Equation ??)

λ′ : ∪n,m∈{0,1...} An
m → {g(σ′)k(A) | g ∈ G, k ∈ {0, 1, . . .}, A ∈ T }

and through, for each h ∈ G (see Equation ??):

λ′
h : ∪n,m∈{0,1...} An

m → {g(σ′)k(A) | g ∈ G, k ∈ {0, 1, . . .}, A ∈ T }

and finally to construct, explicitly, infinite-level supertiles

λ′
h(. . . Am?)

which we will see more or less correspond to tilings in Σ(T, σ′).
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We also describe two equivalence relations ∼ and ≈ and a relation | which
play an important role in giving the precise correspondence between infinite-
level supertiles and Σ(T, σ′).

An interesting point to consider is that without these relations, A is essen-
tially structureless. The degree to which these relations force the geometry of
Σ(T, σ′) is an open and compelling question.

Definition 2.1.1 We first define, for any An....Am? ∈ An
m, the highly useful

g
An...Am?

:= g
(n)

An

...g
(m)

Am

(5)

For insight into the meaning of this device, see Lemma ??, or Figure ??.
If n = 0, g

A0?
= g

A0
; thus when n = 0 or n 6= m there is no ambiguity in

dropping the symbol ? from subscripts of elements of G (however, in general

g
An?

= g
(n)

An

6= g
An

). Note too that

g
An...Ak+1Ak

σk((Ak)T ) = g
An...Ak+1

σk(Ak) (6)

Lemma 2.1.2 For An... ∈ A
n, for all k ≤ n,

g
An...Ak

σk(A(k)T ) ⊃ g
An....AkAk−1

σk−1(A(k − 1)T ) (7)

Proof For any k ≤ n, A(k − 1) ∈ A(k)+; thus by equation ??

σ(A(k)T ) ⊃ g
A(k−1)

(A(k − 1))T

and for any h ∈ G,

h σk(A(k)) ⊃ h g
(k−1)
A(k−1) σk−1(A(k − 1))T

In particular

g
An...Ak

σk(A(k)T ) ⊃ g
An....AkAk−1

σk−1(A(k − 1)T )

Definition 2.1.3 We now define for A = An.... ∈ An:

λ(A) :=
⋂

k<n

g
An...Ak+1

σk(Ak) =
⋂

k≤n

g
An...Ak

σk((Ak)T ) (8)
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Lemma 2.1.4 For n ∈ Z, A = An.... ∈ An, λ(A) is a well-defined unique point
in M . Moreover,

λ(ς(A)) = σ(λ(A)) (9)

Proof By Lemma ?? the g
An...Ak−1

σk(Ak) are nested closed sets; since M is

a complete space, their intersection is non-empty.

Now note that since σ−1 reduces all distances and so as k → −∞,
diam(σk(A(k)) → 0, as do the diameters of any images of σk(A(k)). Since M
is metric, M is Hausdorff (T2), and there is only a single point in λ(A).

As to the proof of equation ??, let Bn+1... = ς(A); thus for all k ≤ n,
Bk+1 = Ak. Thus

λ(ς(A)) =
⋂

k≤(n+1)

g
Bn+1...Bk

σk((Bk)T )

=
⋂

k≤n

(g
An...Ak

)(1)σk+1((Ak)T )

= σ(
⋂

k≤n

(g
An...Ak+1

)σk((Ak)T )

= σ(λ(A))

Lemma 2.1.5 For any n ∈ Z, A ∈ S ∪ T g ∈ G,

λ(An?) = σn(A) (10)

More generally for any n, m ∈ Z, n ≥ m, and any An...Am? ∈ An
m

λ(An...Am?) = g
An...Am−1

σm(Am) (11)

The proof is a trivial exercise in manipulating the notation. See

archive/addresses.2.17.97

Lemma 2.1.6 For any A ∈ S∪T , n ∈ N, the supertile (σ′)n(A) is exactly tiled
by the sets g

An...A1
A0 = λ(An...A0?) with An = A, An...A0? ∈ An?

That is, the tiles in the tiling (σ′)n(A) correspond exactly with the sets
λ(An...A0?).

Proof Let An = A. Then

(σ′)n(A) = g
(n)

A
(σ′)n(AT )

16



by (??)

= g
(n)

A
(σ′)n−1(

⋃

B∈A+

g
B

BT )

=
⋃

AnAn−1?
⊂An?

g
AnAn−1

(σ′)n−1((An−1)T )

=
⋃

AnAn−1An−2?
⊂An?

g
AnAn−1An−2

(σ′)n−2((An−2)T )

= . . .

=
⋃

An...A0?
⊂An?

g
An...A1

A0 (12)

by (??)

=
⋃

An...A0
?⊂An?

λ(An...A0?) (13)

Note that at every stage, the union is of affine images with disjoint interiors
of elements of T . In the final two lines, these images are tiles; thus these last
unions are tilings.

Definitions 2.1.7 Define an equivalence relation ≈ on addresses in ∪n∈Z An
−∞

as follows:

A ≈ B if and only if
(i) ∃n ∈ Z such that A,B ∈ An

−∞ and A(n) = B(n)
(ii) λ(A) = λ(B)

That is, A ≈ B if and only if A and B describe the same point in some
σn(A), A = A(n) = B(n).

We next define a symmetric, reflexive but not transitive relation | on ad-
dresses in ∪n,m∈Z An

m:

For A,B ∈ ∪n,m∈Z An
m, A | B if and only if

17



(i) ∃n, m ∈ Z such that A,B ∈ An
m and A(n) = B(n)

(ii) λ(A) ∩ λ(B) 6= ∅ but λ(A) 6= λ(B)

That is, A | B if and only if A and B describe adjacent tiles in σn(A),
A = A(n) = B(n). Note that A = An . . . Am? | A′

n . . . A′
m? = B if and only if

there exist An . . . Am . . . ∈ A, A′
n . . . A′

m . . . ∈ B with An . . . ≈ A′
n . . ..

Here | is defined on certain addresses; Definition ?? defines | on certain
supertiles and tilings.

Example 2.1.8 An example may bring all this notation to life.
We saw the L-tiles in figures ??, ?? and ??. Consider now Figure ??

The origin o is marked with an asterisk; the inflation σ doubles all coordi-
nates. T consists of one tile, the L-tile, denoted x, in the position indicated.
The four tiles in S are denoted a, b, c, d, in the same positions relative to σ(x)
as in Figure ??. (Note that we take our group G to be isometries generated by
rotations and translations) And so, we have the indicated structures. Keep in
mind the conventions described in Remark ??.

Figure 6: Addressing points and sets of points

2.2 Addressing tilings; constructing infinite level-supertiles

Just as we had the maps σ between points in M and σ′ between tilings in M ,
we use λ, a map from addresses to points, to define a map λ′ between certain
sets of addresses and tilings:

Definition 2.2.1 For n, m ∈ Z, n ≥ m ≥ 0 define

λ′(An...Am?) := g
An...Am+1

(σ′)m(Am) (14)
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= g
An...Am

(σ′)m((Am)T ) =
⋃

An...A0?
⊂An...Am?

λ(An...A0?)

That is, λ′(An...Am?) precisely corresponds to an image of supertile (σ′)m((Am)T );
this image is in “position” An...Am in the supertile (σ′)n(An). In particular,

λ′(An?) = (σ′)n(An) (15)

Note λ′(A0?) = A0.

We thus have

Lemma 2.2.2 For n, m ∈ N, m ≤ n,

λ′(ς(An...Am?) = σ′(λ′(An...Am?) (16)

The proof is a routine manipulation of notation.

Definitions 2.2.3 For h ∈ G, An...Am? ∈ An
m,n ≥ 0 we define:

λ′
h(An...Am?) := h(g

An...Am+1
)−1λ′(An?) (17)

= h(g
An...Am+1

)−1(σ′)n(An)

(If n = m simply use λ′
h(An?) := λ′(An) = (σ′)n(An)

Note that we have essentially shifted the tiling λ′(An?) so that the supertile
λ(An...Am?) is sent to h(σ′)m(Am):

λ′
h(An...Am?) = h(g

An...Am+1
)−1λ′(An?)

⊂ h(g
An...Am+1

)−1 g
An...Am+1

(σ′)m(Am)

= h(σ′)m(Am) (18)

Note
λ′

e(An...Am?) 6= λ′(An...Am?)

For one thing, the left-hand side is congruent to (σ′)n(An); the right-hand side
is congruent to (σ′)m(Am).

We now come to a very important definition: For h ∈ G, m ∈ Z, ...Am? ∈
A∞

m , define:

λ′
h(...Am?) :=

⋃

k≥m

λ′
h(Ak...Am?) (19)
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Finally define the equivalence relation ∼ on {λ′
h(...Am?) | h ∈ G, m ∈

Z, . . . Am? ∈ A∞
m} by, for h, h′ ∈ G, ...Am?, ...A′

m′
? ⊂ A∞,

λ′
h(...Am?) ∼ λ′

h′
(...A′

m′
?)

if and only if there exists an n ∈ N, n > m, m′ such that for all k > n, A′
k = Ak

and such that h(g
An...Am

)−1 = h′(g
A′

n...A′

m′

)−1

Equivalence classes under ∼ of the set of λ′
h(...Am?) are called infinite-

level supertiles. An infinite-level supertile S implicitly can be described by
a representative λ′

h(...Am?). For infinite-level supertiles S,S′, when we write
S = S′, they are equivalent as tilings (see the following Lemma); when we write
S ∼ S′ they are equivalent as hierarchies of tilings (i.e., S,S′ can be represented
by λ′

h(...Am?), λ′

h′
(...A′

m′
?) with λ′

h(...Am?) ∼ λ′

h′
(...A′

m′
?))

Thus, by the following Lemma, S ∼ S′ implies S = S′ but the converse only
holds when Σ(T, σ′) has unique decomposition (See Theorem ??).

Lemma 2.2.4 For h ∈ G, n, m ∈ N , n > m, An....Am? ∈ An
m, as tilings we

have:
λ′

h(An...Am?) ⊃ λ′
h(An−1...Am?) (20)

Consequently, for ...Am? ∈ A
∞
m , λ′

h(...Am?) is a well-defined tiling in M .
Moreover, for h, h′ ∈ G, ...Am?, ...A′

m′
? ⊂ A∞, if λ′

h(...Am?) ∼ λ′

h′
(...A′

m′
?)

then λ′
h(...Am?) = λ′

h′
(...A′

m′
?) as tilings.

The proof is a routine manipulation of notation.

Remark 2.2.5 In particular, note the total lack of any diagonalization

argument, and the explicit nature of the construction of infinite-level

supertiles.

Lemma 2.2.6 Let m ∈ Z, let ...Am? ∈ A∞
m , h ∈ G, and let h′(σ′)mA, A ∈

T ∪ S, h′ ∈ G, k ≥ 0 be any supertile in λ′
h(...Am?). Then there exists an

address ...A′
m? ∈ A∞

m such that there exists a g ∈ G with gA′
m = A, and

λ′
h(...Am?) = λ′

h′g(...A
′
m?).

The proof is a routine manipulation of notation.

Lemma 2.2.7 For any k, m, n ∈ Z, n > 0, k ≥ −n for any A ∈ An
m, h ∈ G

(σ′)k(λ′
h(An...Am?) = λ′

h(k)
(ςkAn...Am) (21)

Consequently, we have, for any k ≥ 0, for any A ∈ A∞
m , h ∈ G
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(σ′)k(λ′
h(...Am?)) = λ′

h(k)
(ςk(...Am?)) (22)

Proof

We begin with k, m, n ∈ Z, n > 0, k ≥ −n, A ∈ An
m, h ∈ G.

(σ′)kλ′
h(An...Am?) = h(k)(σ′)k(g

An...Am+1
)−1(σ′)n(An)

= h(k)((g
(m+1)

Am

)−1)(k)...((g
(n)

An

)−1)(k) (σ′)n+k(An)

= h(k)(g
(m+1+k)

Am+1

)−1...(g
(n+k)

An

)−1 (σ′)n+k(An)

= h(k)g
ςkAn...Am+1

(σ′)n+k(An)

= λ
h(k)

(ςkAn...Am?)

Equation ?? follows immediately from equations ?? and ??.

We thus have:

Theorem 2.2.8 For every λ′
h(...Am?) there exists a λ′

h′
(...A′

m′
?) with σ′(λ′

h′
(...A′

m′
?)) =

λ′
h(...Am?).

Moreover, if we have λh1(A1) ∼ λh2(A2) then their preimages under σ′

also are equivalent under ∼. Thus we can define without ambiguity, for every
infinite-level supertile S, an infinite level supertile S′ with σ′(S′) ∼ S

Proof Simply let h′ = h(−1), let m′ = m − 1 and let ...A′

m′
? = ς−1(...Am).

The second observation follows from two simple facts: If A1 and A2 agree
to the left of some position n, so do ς(A1) and ς(A2); moreover, if g = h ∈ G,
g(−1) = h−1.

Definitions 2.2.9 Recall Definitions ??. We now define | on {λ′
h(An . . . Am?) | h ∈

G, An . . . Am? ⊂ A, An ∈ S} by3

λ′
h(An . . . Am?) | λ′

h′(A′
n′ . . . A′

m′?) if and only if:
(i) n = n′, A′

n′ ∈ {An′ , (An′)T }
3Note the leading digit is taken to be in S.

21



(ii) ∃ j > n, Aj? ∈ Aj , Aj . . . An?, Aj . . . A′
n? ∈ Aj? such that

(a) λ′(Aj . . . An+1An) | λ′(Aj . . . A′
n+1A

′
n) and

(b) h(g
An...Am+1

)−1(g
Aj ...An+1

)−1 = h′(g
A′

n...A′

m+1

)−1(g
Aj ...A′

n+1

)−1

Another way to view this is that λ′
h(An . . . Am?) | λ′

h′(A′
n′ . . . A′

m′?) if and
only if it is possible that they are adjacent in some unspecified higher level
supertile.

Most importantly, we now define | on {λ′
h(. . . An?) | h ∈ G, An . . . Am? ⊂

A, An ∈ S} as
(i) λ′

h(. . . Ak . . . An?) | λ′
h′(. . . A′

k . . . A′
n?) if and only if:

for all k > n, λ′
h(Ak . . . An) | λ′

h(A′
k . . . A′

n)
(ii) if n > n′, λ′

h(. . . An?) | λ′
h′(. . . A′

n . . . A′
n′?) if and only if

λ′
h(. . . An?) | λ′

h′(g
An...An+1

)−1(. . . A′
k . . . A′

n?);

(iii) | is symmetric.

Remark 2.2.10 As convoluted as the definition of λ′
h(. . . An?) | λ′

h′(. . . A′
n . . . A′

n′?)
may seem, note that it effectively defines whether two infinite-level supertiles
should be fitted together to make a substitution tiling (see the following Lemma
and Proposition ??).

Note that the definition ultimately rests on ≈, a relation discerning whether
two addresses describe the same point.

As we will see in Section ?? ≈ and | can be calculated automatically, in
reasonably well-behaved Σ(T, σ′). Thus we can automatically generate the full
set of substitution tilings in such a species.

Lemma 2.2.11 If λ′
h(. . . An?) | λ′

h1
(. . . A1

n1
?) and λ′

h1
(. . . A1

n1
?) ∼ λ′

h2
(. . . A2

n2
?)

then λ′
h(. . . An?) | λ′

h2
(. . . A2

n2
?)

Thus, | is well-defined on the set of infinite-level supertiles.

The proof of this lemma can be easily verified and is omitted.

Example 2.2.12 We parallel Example ??. Here various tilings are shown as
images under λ′ and λ′

h, where h is the orientation preserving isometry carrying
c to hc. It is probably instructive to check the labelings are correct.
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Figure 7: Addressing tiles and supertiles

Definitions 2.2.13 We close with a little more useful notation:

For all A,B ∈ ∪m A∞
m , define A ∼ B if and only if there exists an n ∈ N such

that for all k > n, A(k) = B(k). Note that by Lemma ??, for A,B ∈ ∪m A∞
m ,

if A ∼ B then there exist h, h′ ∈ G with λh(A) = λ′
h′(B)

For all infinite-level supertiles S, by Lemma ??, if S is represented by λh(A),
A ∈ A∞

n , then for all inflated tiles gσmA in S, there exists a unique h′ ∈ G,
B ∈ A∞

m with A ∼ B and gσmA = h′σmB(m). Define for each S, a map
λS : ∪nA∞

n → M by
for B ∈ A∞

m , λS(B) = h′σmB(m) and (λS)−1(gσmA) = B
This has the effect of assigning addresses to tiles in infinite-level supertiles,

and is in some ways the culmination of the effort made in this section.
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3 Addressing Substitution Tilings

For the following, we fix a real affine space M , a set of affine maps G, a sim-
ilarity σ, and substitution σ′; thus substitution species Σ(T, σ′), prototiles S,
substitution graph Γ(T, σ′), addresses A and labeling maps λ, λ′ and λh are
also fixed.

Many of the theorems in this section are well-known; however the usual
proofs are often obscure, vague or ill-defined. Some of our proofs are new, all
use addressing to explicitly work with supertiles, etc. The theorems at the end
of this section all show that familiar properties of substitution tilings can be
given simple characterizations in terms of Γ(T, σ′).

Theorem 3.1.1 Σ(T, σ′) is not empty.

This follows immediately from the following lemma:

Lemma 3.1.2 There exists an infinite-level supertile that covers all of M .

The following proof is typical of the use of addresses.

Proof Claim 1: For every A ∈ T , there exists a B ∈ T , n ∈ N, h ∈ G such
that hB lies in the interior of (σ′)n(A)

Proof of Claim 1:Let d be the maximum diameter of any prototile; since the
interior of A is open and since σ expands all distances, there exists an n such
that a ball of radius 3d will fit inside of (σ′)n(A). Some tile hB meets the center
of such a ball, and so is contained in the interior (σ′)n(A).

Thus for every A in T , there is an n ∈ N , An...A0 ∈ An
0 , An = A such that

g
An...A1

A0 = λ′(An...A0?) ⊂ int (λ′(An?)) (23)

Claim 2: There is an A ∈ T , n ∈ N , An...A0? ∈ An
0 such that An = A,

(A0)T = A satisfying equation ??.

Proof of Claim 2: Consider a directed graph made as follows: let the nodes
of the graph represent the elements of T ; let the edges of the graph represent
addresses satisfying ??, as follows: From each A ∈ T , for every address An...A0

satisfying equation ??, draw a directed edge leaving the node representing A
heading to the node representing (A0)T . Now this graph has at least as many
directed edges as it does nodes, and so has a directed loop. Suppose these
edges, in turn, represent addresses A1

n1
...A1

0, A2
n2

...A2
0,... Ak

nk
...Ak

0 and then

again A1
n1

...A1
0, with (Aj

0)T = Aj+1
nj+1−1, 1 ≤ j < k, (Ak

0)T = A1
n1−1. Then let
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n = n1+ ...nk−k and let A′
n...A′

0? = A1
n1

...A1
0 A2

n2−1...A
2
0 ... Ak

nk
...Ak

0? It should
be clear that this A′

n...A′
0, A = A′

n satisfies the claim.

Claim 3: Let ...Ak...A0? = ...A′
n−1...A

′
0 ...A′

n−1...A
′
0 ...A′

0?. That is, Ak =
A′

kmod (n)
. Note ...A0 ∈ A∞

0 . For any h, we claim λh(...A0?) is a tiling of all

of M .

Proof of Claim 3: There exists a ball of radius some d containing λ′(A′
n...A′

0?)
and contained in the interior of λ′(A′

n?). That is, there exists a ball B of radius
d such that λ′

h(A0?) ⊂ B ⊂ λ′
h(A′

n...A′
0?). By adjusting d, we can assume that

λ′
h(A0?) contains the center of B. Let g ∈ G be such that g takes the center

of B to o, the fixed point of σ. Then g−1g(kn)σkn(B) is a ball with the same
center as B, contained in the interior of λh(Akn+1...A0?). Thus λh(...An...A0)
contains a sequence of arbitrarily large, concentric balls all sharing the same
center. So λh(...An...A0) covers all of M .

The following relates our construction of infinite-level supertiles to the species
Σ(T, σ′). With Theorems ?? and ??, and Section ??, this allows an explicit and
complete description of the elements of Σ(T, σ′) and their orbits under σ′ (Sec-
tions ?? and ??)

Proposition 3.1.3 Every tiling τ ∈ Σ(T, σ′) is the union of a finite collection
S1, . . . ,Sn of infinite-level supertiles such that no pair intersects in the interior
of any tile in τ and for every pair Si,Sj that do meet, Si | Sj.

Proof of Proposition ??

Begin by letting d be the maximum diameter of any prototile in T , and let
D0 be the ball of radius 3d centered at o. For all n ∈ N let Dn = σn(D0).

Claim: For any n ≥ 0, there is a tiling τ ′ ⊂ τ , covering Dn such that τ ′ is
the union of a finite collection {λhi

(Ai
n?)} of n-level where the interiors of no

pair of n-level supertiles intersects and each pair is either disjoint or is related
by |.

In other words, letting Σn be the collection of all such tilings τ ′, Σn is not
empty.

Proof of Claim: Let C be the minimal tiling in τ that covers Dn+1. By the
definition of substitution tiling, there exists an h ∈ G, A′ ∈ T , j ∈ N , j > n
such that

C ⊂ h(σ′)j(A′)
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Now, setting A′
j = A′,

h−1C ⊂ (σ′)j(A′) =
⋃

A′

j
...A′

n?

⊂A′

j?

λ(A′
j . . . A′

n?)

By comments above, as in the proof of Lemma ??, this is the union of n-
level supertiles that do not meet in the interior of any tile. Noting that any
n-level supertile meeting Bn is contained in C, we thus produce a collection
{λhi

(Ai
n?)} of n-level supertiles in τ covering Bn such that no pair intersects

in the interior of a tile and each pair is either disjoint or related by |, where
each λhi

(Ai
n?) = hλ(Ai

j . . . Ai
n?) for some Ai

j . . . Ai
n? ⊂ A′

j? and hi = hg
Ai

j...Ai
n

.

Letting τ ′ be the union of this collection, the claim is proven.

Suppose τ ′ ∈ Σn; then note that for all m < k, there exists a τ ′′ ∈ Σm

such that τ ′′ ⊂ τ and if for each n-level supertile in τ ′, as given by the claim,
there exists an m-level supertile in τ ′′ as given by the claim. This can be seen by
simply taking τ ′′ as the union of those m-level supertiles in the n-level supertiles
in τ ′ that meet Bm.

And so, there is some sequence of τk, τk ∈ Σk, τk ⊂ τk+1 ⊂ τ , each τk the
union of k-level supertiles, as per the claim, such that the supertiles in τk are
children of the supertiles in τk+1. And so taking the appropriate unions, the
Proposition is proven. Do yet again!

Corollary 3.1.4 Every tile hA, h ∈ G, A ∈ T in every substitution tiling is
in an infinite-level supertile S in τ ; moreover, S that can be represented by
λh(. . . A0), where (A0)T = A (i.e λS(. . . A0) = hA).

The corollary follows immediately from the Proposition and Lemma ??.

The following provides a kind of converse to the preceding Proposition:

Theorem 3.1.5 Assume that for every A ∈ T , there exists a h ∈ G, B ∈ T ,
n ∈ N with hA ∈ int (σ′)n(B) Then every infinite-level supertile is a subset of
some tiling in τ .

Note the assumption is closely related to Theorem ??, since the assumption
follows if we have: for every A, B ∈ T there exists a n ∈ N , h ∈ G with
hA ⊂ (w′)n(B) (by Claim 1 of Lemma ??). Both this statement and the
assumption are very easy to check for in a given example, and are usually
assumed in the definition of substitution tilings.

We really do need this condition: Consider the following example: M is R2,
G consists only of translations. There are two tiles in T , colored squares, with
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Figure 8: Outside of the domain of Theorem ??

the substitutions shown. The infinite-level supertile pictured at right is not in
any tiling in Σ(T, σ′).

Proof Let S be an infinite-level supertile. If S covers M we are done. So
suppose S does not cover M and choose a tile h′A, h′ ∈ G, A ∈ T on the
boundary of S. S can thus be represented by λ′

h(. . . A0) with (A0)T = B,
hgA0)

−1 = h′

With no loss of generality, assume that o ∈ h′A; let D0 be a ball centered
at o with radius 2d, where d is the maximum diameter of the tiles in T , and let
Dk = σkD0.

Let Σk consist of all tilings of Dk by GT such that (i) for τk ∈ Σk there
exists a supertile (σ′)n(B) containing an image of τk, and (ii) τk ⊃ (Dk ∩ S).
We will show that there exists a sequence of τk ∈ Σk, with τk ⊂ τk+1.

Claim: each Σk is non-empty

Proof of claim: By the definition of λ′
h(. . . A0), there must exist an n such

that λ′
h(An . . . A0) ⊃ Dk ∩ λ′

h(. . . A0). Now there exists an m ∈ N, h′′ ∈ G,
B ∈ T such that h′′(An)T is in the interior of (σ′)m(B).

Note that (h′′)(n)(σ′)n(An) ⊂ (σ′)m+n and that for H ( (h′′)(n)(σ′)n(An) =
λ′

h(An...A0),

H = h (g
An...A1

)−1 ((h′′)(n))−1

Now choosing m suitably large, we can assume that

H−1 Dk ⊂ σm+n(B)

Define then H−1Σk to be (h′′)(n)(σ′)n(An) ∪ ((σ′)m+n ∩ H−1) Dk.
The claim is proved.

Note that by the definition of each Σk, if τ ∈ Σk, τ∩Dk−1 ∈ Σk−1; thus there
is a sequence {τk ∈ Σk}, τk ⊂ τk+1, and ∪τk is a tiling in Σ(T, σ′) containing
S.
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4 Characterizations of familiar properties

We now give characterizations of many familiar properties– unique decompo-
sition, having connected hierarchy, cardinality, being repetitive, having self-
similarity. In practice these characterizations are easy to check for in a given
Σ(T, σ′).

See the end of Section ?? for definitions and comments on these properties.

Note that we generally have to take additional assumptions on Σ(T, σ′);
most of these assumptions are taken most of the time by most authors, without
hesitation. We chose a relatively general definition of substitution tiling, partly
so that the way these assumptions were needed would be clearer.

4.1 Unique Decomposition

Recall that by Proposition ??, every tiling τ ∈ Σ(T, σ′) is the union of a finite
collection {S1, . . . ,Sn} of infinite-level supertiles such that no pair intersects in
the interior of any tile in τ and for every pair Si,Sj that do meet, Si | Sj .

Theorem 4.1.1 If Σ(T, σ′) has unique decomposition, for every τ ∈ Σ(T, σ′),
for every pair of collections {S1, . . . ,Sn}, {S′

1, . . . ,S′
m} of infinite-level supertiles

satisfying the conditions described in Proposition ??, we have m = n and after
some reindexing, Si = S′

i.

Of course, if the assumptions needed for Theorem ?? are satisfied, we can
conclude Si ∼ S′

i.

Proof Let τ ∈ Σ(T, σ′), {S1, . . . ,Sm}, {S′
1, . . . ,S′

m} as described. Assume that
there exists S ∈ {S1, . . . ,Sm}, such that S 6= S′ for all S′ ∈ {S′

1, . . . ,S′
m}. In

particular, then, there exists a S′ ∈ {S′
1, . . . ,S′

m} with S′ 6= S′ ∩ S 6= ∅. Now
S 6= S′, so of course S 6∼ S′.

Claim: There exists n ∈ N, An, A′
n ∈ S, h, h′ ∈ G such that S is repre-

sented by λ′
h(. . . An?), S′ is represented by λ′

h′(. . . A′
n?), and int hσn(A) 6=

int hσn(A) ∩ int h′σn(A′) 6= ∅.
The claim easily follows, for S and S′ must agree in their non-empty inter-

section on all supertiles up to some level (since they agree on 0-level). But they
cannot agree on supertiles on all levels or we would have S ∼ S′.

Then (σ)−nS ∩ (σ)−nS′ 6= ∅ (as sets of points), but they cannot coexist
in the same tiling in Σ(T, σ′)— (σ′)−nS ⊃ h(−n)A, (σ′)−nS ⊃ (h′)(−n)A′,
int h(−n)A 6= int h(−n)A ∩ int (h′)(−n)A′ 6= ∅.

So there are at least two preimages of τ under (σ′)−n, and Σ(T, σ′) does not
have unique decomposition.
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Theorem 4.1.2 Assume that for all non-trivial h ∈ G, A, B ∈ T , hA 6= B,
hA 6= A. Moreover, assume that for every A ∈ T , there exists a h ∈ G, B ∈ T ,
n ∈ N with hA ∈ int (σ′)n(B)

Then Σ(T, σ′) has unique decomposition if and only if for infinite-level su-
pertiles S1 = S2 (as tilings) implies S1 ∼ S2.

Recall that S1 ∼ S2 implies S1 = S2 by the definition of ∼.
The theorem is pretty sharp: there is an aperiodic example of a substitution

species Σ(T, σ′) in which one prototile is not invariant under G and different
infinite-level supertiles are equivalent as tilings [?]. Secondly, one can easily per-
vert any Σ(T, σ′) with unique-decomposition to create a Σ(T0, σ

′
0) with unique

decomposition but for which (S1 = S2) 6⇒ (S1 ∼ S2): simply add congruent
copies of one or more the prototiles to T ; these tiles will behave the same way
in σ′ but produce different digits in A. So we really do need something like the
assumption stated.

Moreover, given a Σ(T, σ′), one can construct a new Σ(T0, σ
′
0) such that

every tiling in Σ(T0, σ
′
0) can be decomposed into a tiling in Σ(T, σ′) and no

tile in T0 is invariant under G— simply mark the tiles in T to destroy their
symmetry (cf. Figure 16 in [?]). Finally, we actually only need that every pair
of tiles in T behaves sufficiently differently under σ′; this can be guaranteed by
removing any duplicates from T .

The second assumption is needed to invoke Theorem ??; there are examples
in which the second assumption does not hold and the conclusion of the theorem
is false. Actually, I suspect

the condition is NOT

neededThe theorem is a useful technical statement. Whether or not S1 ∼ S2 can be
easily checked, as can, for two infinite supertiles, Sj ,Si, whether or not Sj | Si;
thus if we assume Σ(T, σ′) has unique decomposition, we can explicitly describe
the entire species Σ(T, σ′), as in Section ??.

Proof Suppose there exist infinite-level supertiles S1,S2 with S1 = S2 but
S1 6∼ S2. Because no element of G leaves any tile A ∈ T invariant, each tile in
S1 = S2 can be uniquely represented as hB, h ∈ G, B ∈ T .

Now by Lemma ?? we can represent S1 by λ′
hg−1

A0

(. . . A0?) and S2 by λ′
hg−1

A′

0

(. . . A′
0?)

where (A0)T = (A0)T = B, and . . . A0?, . . . A′
0? ⊂ A∞.

( hg−1
A0

A0 = hg−1
A′

0
A′

0 = hB. )

We must have that either σ′((A1)T ) 6= σ′((A′
1)T ) or A0 = A′

0. For suppose
A0 6= A′

0. Then (A0)
− 6= (A′

0)
− because this would imply the existence of some

non-trivial g ∈ G with gσ′((A1)T ) = σ′((A′
1)T ) = σ′((A1)T ). But then (A1)T 6=

(A′
1)T ; by our assumption, σ′((A1)T ) 6= σ′((A′

1)T ). So either σ′((A1)T ) 6=
σ′((A′

1)T ) or A0 = A′
0.

Now if the second case holds, either σ′((A2)T ) 6= σ′((A′
2)T ) or A1 = A′

1.
And, so on, and thus since S1 6∼ S2, there exists an n ≥ 0 such that σ′((An+1)T ) 6=
σ′((A′

n+1)T ). Take n to be minimal over all choices of our initial tile in S1 = S2.
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Without any loss of generality, we may assume n = 0 (if n > 0, note that
n minimal implies S1,S2 agree on up to k-level supertiles k ≤ n, so one can
uniquely apply (σ′)−n to the tilings S1,S2 to obtain new S′

1,S′
2 with S′

1 = S′
2,

S′
1 6∼ S′

2 and new minimal n = 0).
So S1,S2 can be represented by λ′

hg−1
A0

(. . . A0?) , λ′
hg−1

A′

0

(. . . A′
0?) with σ′((A1)T ) 6=

σ′((A′
1)T ); thus (σ′)−1S1 6= (σ′)−1S2— they do not match as tilings.

By Lemma ?? there exists a τ ∈ Σ(T, σ′) with (w′)−n(S1) = (w′)−n(S2 ⊂
τ). τ thus has two preimages in (σ′)−1 and so, Σ(T, σ′) does not have unique
decomposition.

4.2 Connected Hierarchy

Theorem 4.2.1 A tiling in Σ(T, σ′) has connected hierarchy if and only if every
pair of tiles lies in an infinite-level supertile.

Proof One direction is trivial. The other direction is proved in essentially the
same way as is Proposition ??.

Theorem 4.2.2 Suppose Σ(T, σ′) has unique decomposition. A tiling in Σ(T, σ′)
has connected hierarchy if and only if it is an infinite-level supertile.

That is, the infinite-level supertiles covering M are the only tilings in Σ(T, σ′)
having connected hierarchy. There is an example, described in [?] of an aperiodic
substitution species without unique decomposition, containing a tiling that is
not an infinite-level supertile but does have connected hierarchy! The trouble
is that although every pair of tiles must be within some large supertile, triples
of tiles may not be within any large supertile!

Proof

It is clear that infinite-level supertiles covering M do have connected hierar-
chy. Suppose a tiling τ ∈ Σ(T, σ′) does have connected hierarchy. Then every
pair of tiles lies in an infinite-level supertile, by Theorem ??; by Theorem ??,
every tile is in a unique infinite-level supertile. Thus, one infinite-level supertile
covers τ .
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Figure 9: Pathological substitution graphs

4.3 Repetitive Tilings and species

We now characterize repetitive tilings in terms of the substitution graph Γ(T, σ′)
(Section ??). Let us take a moment to examine certain pathologies that can
arise. In Figure ?? we see, from left to right:

(1) On the left, a very nice substitution graph: every node can be reached
from every other node, by paths of every length. In fact, what matters is that
every node can be reached from every other node by paths of every length
greater than same given length n.

(2) Every node can be reached from every other node, but only by paths of
certain lengths.

(3) Certain nodes cannot be reached from other nodes.
(4) The substitution graph is not even connected.
Each of these arises from a real example. Graph (1) must give a species that

is strongly repetitive. Graph (2) must give a species that is not repetitive, but
each tiling in the species is strongly repetitive. Graph (3) must give a species
in which there is a tiling that is not repetitive at all. In graph (4), the species
is essentially the union of two distinct species, each of which may or may not
be repetitive.

Theorem 4.3.1 We must assume that for every r ∈ R, there exists a finite
collection of tilings covering a ball of radius r in M , such that every tiling in
Σ(T, σ′) is the union of images under G of elements of this collection. That is
we must assume that Σ(T, σ′) has finitely many local configurations.

A substitution species Σ(T, σ′) is strongly repetitive if there exists an n such
that for all m > n,A, B ∈ T , there exists a h ∈ G such that hA ⊂ (σ′)m(B)

This in turn arises if and only if for every pair of nodes A, B ∈ T in the
substitution graph Γ(T, σ′), there exist a pair of paths X and Y in Γ(T, σ′) from
A to B, such the lengths of X and Y are relatively prime (or a single path of
length 1).

The assumption does not generally hold but is clearly necessary. If Σ(T, σ′)
is “vertex-to-vertex” (see Section ??) then the assumption does hold, and most
known substitution species are vertex to vertex. Sadun [?] has an example of a
“substitution tiling” that is not vertex-to-vertex, but requires an infinite collec-
tion of congruence classes of the tiles (but only a finite collection of similarity
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classes). Danzer claims to have several non-vertex-to-vertex examples but has
not produced a formal proof [?]. At this time, there is no general finite algorithm
to check whether an arbitrary Σ(T, σ′) has finitely many local configurations; it
seems plausible that there is some algebraic characterization in terms of σ.

The condition in terms of the substitution graph Γ(T, σ′) is very easily
checked, and so is of practical use.

Proof We first show that a substitution species Σ(T, σ′) is strongly repetitive
if there exists an n such that for all m > n,A, B ∈ T , there exists a h ∈ G such
that hA ∈ (σ′)m(B). So suppose the condition holds.

Claim 1: There exists some N ∈ N such that for all A, B ∈ T , k > N , there
exists h ∈ G such that hA ⊂ int (σ′)kB

Proof of Claim 1: First, note that for every B ∈ T , there exists an nB ∈ N,
CB ∈ T , hB ∈ G such that hBCB ⊂ int (σ′)nB (see Claim 1 of Lemma ??. By
the hypothesis, for all k > n, there exists an h such that hB ⊂ (w′)k(hACA) ⊂
int (σ′)k+nA . Take N = max{nA + n}.

Now fix some r ∈ R, r > 0; by our assumption, there exists a finite collection
Cr of tilings covering a ball of radius 2r in M , such that every tiling in Σ(T, σ′) is
the union of elements of CrG. We may assume that each element of Cr actually
appears in some tiling in Σ(T, σ′).

By the definition of Σ(T, σ′),for each tau ∈ Cr, there exists a hτ ∈ G, nτ ∈ N,
(Aτ ∈ T such that hτ τ ⊂ (σ′)nτ (Aτ ).

Claim 2: There exists an M such that for all τ ∈ Cr, for any A ∈ T , there
exists an image of τ in (σ′)M (A).

Proof of Claim 2: Let M = max{nτ +N +1}. Then for every τ ∈ Cr, for any
A ∈ T , note that there exists an h ∈ G with h hτ τ ⊂ h(σ′)nτ (Aτ ) ⊂ (σ′)M (A)
since M − nτ > N , and by Claim 1.

Now we are done: Fix r > 0 and construct M as above. Let R be more
than twice the maximum diameter of any M -level supertile. Then any tiling of
radius r in a tiling in Σ(T, σ′) will be contained in some Cr; within every ball of
radius R, there will be an M -level supertile; every M -level supertile contains an
image of every element of Cr and so contains an image of every tiling of radius
r.

The second part of the theorem should be fairly evident. The second condi-
tion really amounts to saying that there is some N such that between any two
nodes of the graph Γ(T, σ′) there exist paths of every length greater than N .
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Theorem 4.3.2 We must assume that for every r ∈ R, for every tiling τ ∈
Σ(T, σ′), there exists a finite collection of tilings covering a ball of radius r in
M , such that τ is the union of images under G of elements of this collection.
That is we must assume that τ has finitely many local configurations.

Every tiling in Σ(T, σ′) is strongly repetitive if there for all A, B ∈ T , there
exists a h ∈ G such that hA ⊂ (σ′)m(B).

This occurs if and only if for every pair of nodes A, B ∈ T in the substitution
graph Γ(T, σ′), there exists a path X in Γ(T, σ′) from A to B.

Note that this has weaker hypotheses and weaker conclusions than Theorem
??. The proof is essentially the same as the proof above. fill in, remove certain

defs, references

4.4 Cardinality

The following is well known; we give a simple proof. Define Σ(T, σ′)/G to be
the equivalence classes in Σ(T, σ′) where two tilings are equivalent if and only
if some element of G takes one to the other. Then:

Theorem 4.4.1 The cardinality of Σ(T, σ′)/G is no greater than 2ℵ0 ;
If Σ(T, σ′)/G has unique decomposition, the cardinality of Σ(T, σ′)/G is 2ℵ0 .

Proof First, A0 has cardinality 2ℵ0 (See Lemma ??). Each equivalence class of
A0 in ∼ is countable, and so the collection of equivalence classes is uncountable;
each of these corresponds to an infinite-level supertile up to G, so there are 2ℵ0

infinite-level supertiles modulo G. Each tiling in Σ(T, σ′) is the union of finitely
many infinite-level supertiles; there are 2ℵ0 finite collections of infinite-level
supertiles, up to G, and so at most 2ℵ0 tilings in Σ(T, σ′) up to G.

If Σ(T, σ′) has unique decomposition, then we note first we may modify the
proof of Lemma ?? in order to find an A ∈ T , such that there exist n, m ∈ N,
h, h′ ∈ G such that hA ⊂ int (σ′)n(A), h′A ⊂ int (σ′)m(A) and taking m ≤ n,
hA 6⊂ (σ′)n−m(A) ⊂ int (σ′)n(A). Following the proof, we may thus conclude
there are 2ℵ0 infinite-level supertiles that cover M . If Σ(T, σ′) has unique de-
composition, these are all distinct as tilings and Σ(T, σ′) has cardinality 2ℵ0 .

33



4.5 Self-similarity

Here we use addressing to establish a few useful theorems relating self-similar
tilings to substitution species. Each substitution species contains only a few
self-similar tilings, yet the self-similar tilings capture all of the local structure
of tilings in the species. However, one must be very careful when extrapolating
global properties— such as unique decomposition— from self-similar tilings to
the entire species.

Theorem 4.5.1 For all τ ∈ Σ(T, σ′), there exists a τ ′ ∈ Σ(T, σ′)
with σ′(τ ′) = τ .

In particular, σ′ : Σ(T, σ′) → Σ(T, σ′) is onto.

Proof By Proposition ??, τ can be covered by some collection {λ′
hi

(Ai) | Ai ∈
A∞

0 } that meet only along the boundaries of tiles. By Corollary ??, there exists
a collection {λ′

h′

i
(A′

i) | A′
i ∈ A∞

−1, σ′(λ′
h′

i
(A′

i)) = λ′
hi

(Ai)}. Since, for any tiling

τ ′ of any subset of M , the image σ(X) of the set X of points in boundaries of
tiles in τ ′ is a subset of the set of points in the boundaries of tiles in σ′(τ ′), we
have that the supertiles {λ′

h′

i
(A′

i)} cover M but meet only along the boundaries

of tiles.
So τ ′ = ∪iλ

′
h′

i
(A′

i) is a tiling of M with σ′(τ ′) = τ .

Theorem 4.5.2 For any Σ(T, σ′) there exists an n ∈ N, τ ∈ Σ(T, σ′) with
(σ′)n(τ) = τ . In particular, every substitution species contains a self-similar
tiling.

Proof Really this is a corollary of Lemma ??. Recall that in the proof of
that Lemma, we found a tile A ∈ T such that there existed an n ∈ N , h ∈ G
with hA ⊂ int ( (σ)′(A) ); thus h = g

An...A0
for some An . . . A0? ∈ An

0 with

An = A = (A0)T . Let X be the string An−1 . . . A0.
Define A ∈ A∞

0 with A = X•.
Similarly define B ∈ A

0
−∞ with B = A0•X .

Now let x = λ(B) ∈ A. Let h′ ∈ G take x to o. Then we have, as can easily
be verified (See Lemmas ?? and ?? :

(σ′)n(λh′(A)) = λh′(A) ∈ Σ(T, σ′)
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Theorem 4.5.3 If Σ(T, σ′) has unique decomposition, then for any n ∈ N,
there exists τ ∈ Σ(T, σ′), m > n with (σ′)m(τ) = τ and for all k < m, (σ′)k(τ) 6=
τ

Proof This is proved very much in the style of Lemma ??. Fix n ∈ N.
We first show that for every A ∈ T , there exists a B ∈ T , j ∈ N, j > n,

g
Aj...A0

∈ G, An = A, (A0)T = B such that g
Aj...A0

B lies in the interior

of (σ′)j(A) but g
Aj...A2

σ′(A1) meets the boundary of (σ′)j(A). (Note that

g
Aj...A2

σ′(A1) ⊃ g
Aj ...A1

A0 = g
Aj...A0

B).

Begin by choosing a tile hB in (σ′)n(A) meeting the boundary of (σ′)n(A).
By Claim 1 of the proof of Lemma ?? there exists a j ∈ N, j > n, and

By Lemma ?? hB = λ(An . . . A0?) for some An . . . A0? ⊂ An? where An = A Check

and (A0)T = B.
Simply let d be the maximum diameter of any prototile; since the interior of

A is open and since σ expands all distances, there exists an n such that a ball
of radius 3d will fit inside of (σ′)n(A). Some tile hB meets the center of such a
ball, and so is contained in the interior (σ′)n(A).

Thus for every A in T , there is an n ∈ N , An...A0 ∈ An
0 , An = A such that

g
An...A1

A0 = λ′(An...A0?) ⊂ int (λ′(An?)) (24)

Claim 1: There is an A ∈ T , n ∈ N , An...A0? ∈ An
0 such that An = A,

(A0)T = A satisfying equation ??. FINISH!

Corollary 4.5.4 If Σ(T, σ′) has unique decomposition, Σ(T, σ′) contains a count-
ably infinite collection of self-similar tilings.

The proof is immediate. Contrast this with Theorem ?? below.

The following provides a nice contrast to the above theorems. Something
like the following should be true in virtually any setting:

Theorem 4.5.5 For all n ∈ N , for M = R
dim, G a group of measure-preserving

affine maps that includes translations, there exists a substitution species Σ(T, σ′)
such that for any 0 < k < n, for any τ ∈ Σ(T, σ′), (σ′)k(τ) 6= τ

Proof For any n, dim ∈ N, we produce a virtually trivial example in Rdim.
Simply define a tile A = [−1, 1]dim, the unit hypercube. Define σ to be the
similarity that simply expands all coordinates by a factor of 21/n. Let T =
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{σkA | k ∈ Z, 0 ≤ k < n}, and define for each σkA ∈ T with k < n − 1,
σ′(σkA) = σk+1A. Define σ′(σn−1A) = ∪(A + (±1, . . . ,±1)), the natural tiling
of [−2, 2]dim by 2dim translated copies of A.

It should be clear that the elements of Σ(T, σ′) are each square lattice tilings
and that for any 0 < k < n, for any τ ∈ Σ(T, σ′), (σ′)k(τ) 6= τ .

Corollary 4.5.6 (to Theorem ??): A infinite-level supertile S is self-similar if
and only if there is a A ∈ A

∞
−∞ of the form X•X where X is some finite string,

such that S can be represented by λh(X•) and A0) with h ∈ G so o = hλ(•X)

Proof Suppose S is self-similar; thus there exists an n ∈ N with (σ′)n(S) = S
Note we must have o ∈ S. Let o ∈ hA ⊂ S for some tile hA. Then by

Lemma ?? there exists some A0 . . . ∈ A0
−∞ with hλ(A0 . . .) = o. Also, there

exists an . . . A0 ∈ A∞
0 with S = λ′

h(. . . A0). Applying Lemma ?? and Lemma
?? we see that for all 0 < k < n we must have Ak = Ak−n and indeed, for all
k ∈ N, m ∈ Z, Ak = Ak+mn. Let A ∈ A

∞
−∞ be defined by A(k) = Ak, and

X = An−1 . . . A0 and we are done.
The converse is immediate.

Corollary 4.5.7 There are at most countably infinite self-similar tilings in
Σ(T, σ′). In particular, if Σ(T, σ′) has unique decomposition there is a countably
infinite collection of self-similar tilings in Σ(T, σ′).

Contrast this to Theorem ??. On the other hand, one can easily show that
every bounded neighborhood in a tiling in Σ(T, σ′) appears in a self-similar
tiling. Still, one must be careful when extrapolating properties from self-similar IS this REALLY true,

or just a peice of folk-

lore?

tilings to entire substitution species.

Theorem 4.5.8 A tiling is self-similar if and only if it is the union, with dis-
joint interiors, of a finite collection of infinite-level supertiles, which are pairwise
disjoint or related by |.

Proof

|S|n in |S|n
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5 Three applications of addressing

At long last we give some examples of how addresses might be used to prove
new theorems.

5.1 Automatic descriptions of adjacencies

Roughly speaking, a set of strings is “automatic” if the set can be generated by
some algorithm; an equivalence relation on a set of strings is automatic if it can
be checked by some algorithm.

We turn to automatic descriptions of structures in Σ(T, σ′). The third part
of the following definition is somewhat non-standard, but only because we are
struggling to fix a “decimal point” in automatic infinite strings.

Definition 5.1.1 A set A of finite strings of digits drawn from some finite
alphabet D is automatic if and only if there exists a finite directed graph Γ
with nodes in exact correspondence with D, such that A exactly consists of
strings corresponding to directed paths in Γ.

A set A of infinite strings of digits drawn from some finite alphabet D is au-

tomatic if and only if the set of all finite substrings of strings in A is automatic
(that is, if and only if there exists a finite directed graph with nodes in exact
correspondence with D, such that A exactly consists of strings corresponding
to infinite directed paths in Γ.

A set A of maps Z to some finite alphabet D is automatic if and only if there
exists a finite directed graph with nodes in exact correspondence by with D, such
that each map in A corresponds with an infinite directed path in Γ, and each
infinite directed path in Γ corresponds to a collection {A, ςn(A) | n ∈ Z} ⊂ A.

The graph γ is a finite-state automaton.
Recall Definition ??:

Theorem 5.1.2 For any set of addresses A, A is automatic.

Proof We must provide the automaton, denoted Γ(A). Take nodes labeled in
T ∪ S ∪ {�}. From every node A in T ∪ S, draw a directed edge leaving A to
each B ∈ A+ ⊂ S. Draw a directed edge from � to each node in T ∪ S ∪ {�}.

It should be clear that the infinite paths in Γ(A) are in correspondence with
the addresses A.

In fact, we can simplify our lives if we pretend that the substitution graph
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Γ(T, σ′) is the automaton required: addresses correspond to infinite paths in
Γ(T, σ′) (that may or may not have a starting point but do go on forever),
where the path is somehow parametrized by Z (and note too that the digits in
an address correspond to edges in Γ(T, σ′) but nodes in Γ(A)).

Definition 5.1.3 A relation ∼= on an automatic set of strings of digits in D
is automatic if and only if there exists a directed graph Γ with edges labeled in
D×D such that paths in Γ exactly correspond to pairs of strings related by ∼=.

A relation ∼= on an automatic set of maps Z → D is automatic if and only
if there exists a directed graph Γ with edges labeled in D × D such that paths
in Γ exactly correspond to equivalence classes under the shift map ς of pairs of
strings related by ∼=.

Effectively, the above is a description of a Mealy machine. We extend the
definition to addresses. Again, the decimal representation of R motivates the
definition.

Theorem 5.1.4 If Σ(T, σ′) has finitely many local configurations, then ≈ on
A is automatic.

This theorem is rich in corollaries. Recall ≈ is the basis for defining |.

Proof There are finitely many ways a tile may meet its neighbors; let these
be given by {(A, hB)} ∈ T × GT . Construct a graph Γ′ as follows: the nodes
are in exact correspondence with the (A, hB); for every (A, hB), for every C ∈
A+ ⊂ S, D ∈ B+ ⊂ S such that C ∩ h(1)D 6= ∅, draw a directed edge leaving
(A, hB), labeled (C, D) and arriving at (CT , (gC)−1 h(1)gDDT ) ∈ {(A, hB)}.

Now in some essential sense, Γ′ is the graph we care about, just as Γ(T, σ′)
really encodes the automatic structure of A. But to be careful, we must go
ahead and construct another graph to account for � and the breaking of single
tiles into sets of pairs of neighboring tiles by σ′.

So construct Γ(≈) as follows: Simply begin with a copy each of Γ′ and
Γ(T, σ′), with one additional node labeled �. Recall the edges in Γ(T, σ′) exactly
correspond to elements of S. Label each edge in the copy of Γ(T, σ′) by (A, A),
where A ∈ S corresponds to the edge. For each node in Γ(A) labeled A ∈ S,
for each pair of tiles B, C ∈ A+ ⊂ S that are not disjoint in σ′(A), draw edges
from A in Γ(A) to the nodes (BT , (gB)−1 gCCT ) and (CT , (gC)−1 gBBT ); label
these edges (B, C) and (C, B), respectively. Finally, draw edges from the node
� to itself and to the nodes in the copy of Γ(T, σ′); label each of these (�,�)

It should be clear that A,B ∈ ∪nAn correspond to equivalent points in M
if and only if they correspond to a path in Γ such that for each n ∈ Z, the n-th
edge in the path is labeled (A(n),B(n)),
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Remarks 5.1.5 This theorem seems very useful in a variety of ways. In
the first place, it allows us to explicitly check whether two addresses give the
same point, and consequently, whether two addresses in Am give adjacent tiles,
supertiles or infinite-level supertiles.

Theorem 5.1.6 There is an algorithm that will terminate if and only if Σ(T, σ′)
has finitely many local configurations. If Σ(T, σ′) does have finitely many con-
figurations, this algorithm will produce the nodes of the graph Γ in the preceding
proof.

The point of this Theorem is that, in practice it is easy to compute, by
hand or on a computer, the pairs of adjacent tiles needed in the preceding
construction— if Σ(T, σ′) does have finitely many local configurations.

Proof Simply iterate the following procedure:
(1) Let Q0 be the collection of pairs (BT , (gB)−1gCCT ) where B, C ∈ A+

for some A ∈ T and B ∩ C 6= ∅.
(2) Suppose Qi is defined and non-empty for all i < k. Let Qk be the collec-

tion of pairs (BT , (gB)−1 h gCCT ) where (i) for all i < k, (BT , (gB)−1 h gCCT ) 6∈
Ci and (ii) there exists a (A, hD) ∈ Qk−1 with B ∈ A+, C ∈ D+ and B∩h(1)C 6=
∅.

(3) If Qk = ∅, then we are done and ∪i<k Qi is the desired collection of
adjacencies. Otherwise, return to step (2).

Not the procedure terminates if and only if there are finitely many local
configurations.

Example 5.1.7 Examples are certainly in order. We will give two; in precisely
the manner described above, the author has computed the adjacencies for the
L-tiling and the tilings of the line arising from the symbolic dynamical system
0 → 1, 1 → 10.

Figure 10: A simple example

39



We begin with a simple example first. The space is R with the usual metric,
G consists of translations. The tiles are segments of length 1 and φ = 1

2 (1+
√

5),
denoted 0 and 1 respectively. The inflation σ is a similarity of modulus φ.
σ′(0) = 1, σ′(1) = 1 ∪ (0 + φ). We denote the image of 1 in σ′(0) by a, the
image of 1 in σ′(1) by b and the image of 0 in σ′(1) by c. Thus T = {0, 1},
S = {a, b, c}, as indicated at the top of Figure ??.

On the middle left in Figure ??, the substitution graph is shown; on the
middle right we see Γ(A)

On the bottom left we see the graph Γ′ and finally on the bottom right we
have Γ(≈). It is now apparent that A ≈ B if and only if A,B are identical or of
the form

A = #cabb

B = #bcac

where # is some string common to both A and B, ending in either a or b

We now give a more complex example: the L-tiles of Figure 1: After some
calculation, one arrives at the graph Γ(≈) indicated in Figure ?? (Since there
is only one element of T , we supress the nodes coming from Γ(A); however, the
directed edges from these nodes are important and have been included. The
dark arrows each represent a group of arrows from each node labeled in T ∪S.)

Figure 11: A complex example

And, though the rules are more complex to write out, it is not hard to check
that, for example,

#acbbbcb

≈#caaaccb

as indicated in the bottom right of Figure ??.

Lemma 5.1.8 A∞
−∞ is automatic; ∼ is automatic on A∞

−∞
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Proof This is really trivial: to show A∞
−∞ is automatic, use the graph formed

by deleting the node � from Γ(A). To show ∼ is automatic, form the graph
Γ(∼) as follows: let the nodes be in correspondence with S ∪ {?}; from each
node corresponding to, say, A ∈ S, draw two edges labeled (A, A), one returning
to the node itself, the other going to the node labeled ?. Draw |S|2 edges from
? to itself, labeled in S × S.

Corollary 5.1.9 | is automatic on the sets ∪An
m and

It really is easy to check whether addresses give adjacent tiles. It is also
possible to construct automata that quickly produce, say, all addresses adjacent
to a given address, etc.

Application of the Application

There are many numerical simulations or computations for which a grid is
necessary: modeling fluid flow, finding algebraic curves implicitly, studying the
dynamics of a population, and literally hundreds of other examples.

For our purposes, these fall into two classes: those in which highly regular,
self-similar structure is desired, and those for which highly regular structure is
very much unwanted.

Finding the solutions to a set of algebraic equations numerically is a perfect
example of the first class. One divides the space into some sort of tiling and
examines each tile for the presence of part of the solution set. If the set of
solutions appears to intersect the tile, the tile is subdivided and each smaller
tile is examined, etc. Clearly this is closely connected to the study of self-
similar tilings, although only a handful of substitutions are used in practice
(those related to the cubic lattice). However, one problem does arise that we
shed light on: how does one systematically keep track of all those little tiles—
their positions, their adjacencies, and so forth. The brute-force solution is to
keep detailed information about every tile created. The simpler solution is to
simply keep each tile’s address, from which the tiles position and adjacencies
can readily be calculated. (And in Section ?? we will see that we can do with
even less).

However, often highly regular grids are exactly what one does not want; the
geometry of the grid may give misleading results. As a simple example, imagine
measuring distance in the Euclidean plane, but by measuring along the edges
of an arbitrarily fine square lattice. No matter how fine the lattice, of course,
one’s answer is likely to be dramatically off. On the other hand, highly irregular
grids would appear to have a high cost in storage needs. It would appear at
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first glance that detailed information would have to be kept about the position,
shape and adjacencies of every cell.

But self-similar grids can appear highly irregular. Radin and Sadun [?] have
shown, for example, that distance can be measured to arbitrary accuracy along
the edges of the pinwheel tilings (and indeed, this key property is likely to be
generic in some sense). We can easily loosen our restrictions on G and obtain
some crazy-looking, highly amorphous substitution tilings that still have all the
structure outlined in this paper. Thus, one might have the best of both worlds–
a highly regular combinatorial structure that eases certain computational tasks,
but is less sensitive to the geometry of the problem at hand.

Over the next few years, this author would like to work with various re-
searchers involved with computational modeling to see if addressing in substi-
tution tilings is in fact practical.

5.2 Explicit descriptions of Σ(T, σ′)

5.3 Orbits in Σ(T, σ′) under σ′

Explicitly describing orbits in Σ(T, σ′) under σ′ is a perfect example of how
addressing can be exploited. For these examples, we will need a bit of the
structure outlined in Section ??.

6 Locally-finite encoding of addresses

Addresses provide concrete understanding of substitution tilings, at least for this
author. Recently, I constructed matching rules for all known substitution tilings
[?]; that is, given a substitution species, I gave an algorithm that produces a set
of marked tiles such that, when they are put together, they must recreate the
tilings in the original substitution species.

Part of the problem comes down to this: if every tile in a substitution tiling
is meant to play a role in an infinite hierarchy (i.e. be assigned an address
. . . An . . . A0?), how can this be done with a finite collection of markings. In
other words, how can one encode an infinite amount of information in a locally
finite manner? (There are really two steps to the proof: first, one must cook
up the correct set of markings, by examining Σ(T, σ′); secondly one must show
that any tiling made with the new marked tiles is more or less equivalent to a
tiling in Σ(T, σ′). In the second part of the proof, one can view the markings
as a “wish list”, denoting a tile’s intended role in an infinite level supertile.)

I would like to describe the initial ideas behind the construction of the mark-
ings in [?]. As it turned out, these ideas turned out to be technically redundant
and have vanished without trace from [?]; this is unfortunate, since they provide
the clearest understanding of how the construction works. We won’t present a
series of theorems and lemmas, but will instead give an expository discussion.
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Recall that in an infinite-level supertile can be regarded as a tiling by
λ′

h(. . . A0?); we could easily define formally a map from A∞
0 to the set of tiles

in infinite-level supertiles (modulo G) such that A, B correspond to tiles in the
same infinite-level supertile if and only if A ∼ B; more generally, we can as-
sociate A∞

n with n-level supertiles, with all the structure developed in Section
??.

The problem before us is, how can one mark the tiles with some finite col-
lection of symbols such that the addresses A,B, etc are apparent?

We begin by recalling that S must have at least two elements; with a little
finessing, we may more assume that in fact, for all A ∈ S, A+ has at least two
elements. For each A, choose two special elements of A+— a “local key” and a
“regional key”. Note that every element of S is exactly one of”: a local key, a
regional key or neither.

We will mark each supertile in a substitution tiling with an ordered pair
of digits drawn from S ∪ �. The first digit in the pair will be called the tile’s
“primary register”; the second digit in the pair will be called the tile’s “secondary
register”. Every supertile has some address ...An?, where the supertile is of level
n (recall tiles are 0-level supertiles). The primary register of each supertile will
contain the digit An ∈ S.

The idea is that using the secondary registers, the markings on the tiles
alone can encode, without ambiguity, the primary registers of all higher level
supertiles, and so encode the address of the entire infinite level supertile.

So, for every n-level supertile . . . ...An?:
If An∈S is a local key, the secondary register is to contain the contents (An+1)

of the primary register of the supertiles’ parent.
If An∈S is a regional key, the secondary register is to contain the contents of

the secondary register of the supertiles’ parent.
If An∈S is not a key, the secondary register is to contain null symbol �.

Claim 1: every tile (except, possibly, one special tile) in an infinite-level
supertile will be unambiguously marked by the above procedure.

Claim 2: Once the tiles are marked, the address of any tile can be read
off from the markings (once we figure out how to compare information over
arbitrary distances).

The claims are virtually tautological.

Proof of Claim 1: Take any infinite-level supertile; every tile, with at most
one exception, will be have an address . . . A0 of one of the following forms:
. . .N , . . . NL, . . . LL, . . . NRR . . .R, or . . . LR . . .R (where L denotes the digit
is a local key, R denotes the digit is a regional key, and N denotes the digit is
not a key).

In each case the contents of the primary register will be A0; in all but the
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third and fifth cases the secondary register will be �. In the third case, the
secondary register will contain the digit A2. In the last case the secondary
register will contain the digit An+1, where An is a local key and Ak is a regional
key for all k < n.

There may be a single tile with an address of the form . . . R . . . R. It does
not matter what the contents of the secondary register are; for various reasons,
the techniques in [?] could never make use of such a marking.

Proof of Claim 2: To find the address of any tile in an infinite-level supertile,
we reconstruct the primary registers of every supertile containing the tile. This
is easy: If a supertile has address . . . An?, we find the contents of the super-
tiles primary and secondary registers in the secondary registers of . . . AnL? and
. . . AnR?, respectively. By induction, it is clear that these digits are marked in
the secondary registers of the tiles . . . AnLR . . . R? and . . . AnRR . . . R?, respec-
tively.

So this is how information can be stored. The remaining trouble

7 Philosophical epilogue
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