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Abstract. A substitution tiling is a certain globally defined hierarchical
structure in a geometric space. In [6] we show that for any substitution tiling
in E", n > 1, subject to relatively mild conditions, one can construct local
rules that force the desired global structure to emerge. As an immediate
corollary, infinite collections of forced aperiodic tilings are constructed. Here
we give an expository account of the construction. In particular, we discuss
the use of hierarchical, algorithmic, geometrically sensitive coordinates—
“addresses”, developed further in [9].

Figure 1. A substitution tiling

1. Introduction

Global structure arises constantly from local properties, in nature and in
abstract: trees, people and crystals are good examples of the former; groups,
automata and curvature provide good examples of the latter.
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Figure 2. A matching rule tiling

Substitution rules generate global hierarchical structure in the plane,
such as spaces of aperiodic heirarchical tilings. For example, in figure 1, we
first see on the left a small L-tile and rules for “inflating and subdividing”
the tile. As this process is iterated, larger and larger regions of the plane
are tiled with L-tiles. On the right of figure 1, these L-tiles are arranged
hierarchically into larger and larger L-shaped “supertiles”— the images
of inflated and subdivided L-tiles. The thicker lines have been added to
emphasize this hierarchy.

We can thus define a global structure— the “substitution tiling” induced
by the inflation and division of the tiles. If a set of prototiles admits no tiling
that is invariant under a translation (or more generally, no tiling invariant
under any infinite cyclic group of isometries), the prototiles are aperiodic.

For example, the infinite L-tiling suggested at right on figure 1 cannot
be translated since any translation will place some giant L-shaped supertile
onto itself, and each tile is in only one L-shaped supertile of each size. But
the unmarked L-tiles by themselves are not aperiodic since they can tile
rectangles and hence can form periodic tilings.

By themselves L-tiles are not forced to tile aperiodically. They them-
selves cannot recreate the hierarchical structure of figure 1.

On the other hand, the tiles in figure 2 must make tilings in which
the original hierarchical L-tiling is clearly visible, when the simple rule of
matching black to black and white to white is followed [7] (The proof of
this is by different techniques than that of the theorem below) . That is,
local conditions force L-shaped supertiles of arbitrary size!

As the hierarchical structure of figure 1 is precisely reproduced, we
say the original substitution tiling has been “enforced” by these marked
“matching rule tiles”. The tiles themselves are “aperiodic” and “hierarchi-
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cal” as they can only produce aperiodic hierarchical tilings. Precise defini-
tions of these all of these terms are in [6] and elsewhere.

Beginning in 1964 with R. Berge’s insightful paper [1], a number of
examples of aperiodic hierarchical tilings have appeared. S. Mozes produced
a method for producing matching rule tiles enforcing a certain class of
heirarchical tiling [14], but no truly general method had emerged until [6].

This theorem includes all examples known to the author:

Theorem [6] Every substitution tiling of E", n > 1, can be enforced with
finite matching rules, subject to a very mild condition:

the tiles are required to admit a set of “hereditary edges” such that the

substitution tiling is “sibling-edge-to-edge”.!

The proof is somewhat technical but rests on simple principles. Here
we attempt only to discuss a few general principles that may have wider
application.

The primary structures are addresses generated by the substitution pro-
cess; these addresses can serve tilings, configurations, tiles and points and
encode a variety of information. In essence addresses are the geometric ex-
pression of regular languages, and form an extension of symmetry groups
to semigroups [9].

In a sense, addresses are a geometric lexicon of the regular language
given by the “substitution graph”. The task is to break the space of ad-
dresses into fundamental domains and give rules for correctly piecing them
together. These addresses are hung upon skeletons of edges in the tiling,
which effectively parse the addresses into digits and piece digits into ad-
dresses.

Importantly, these are new combinatorial, geometric structures that
may be useful in describing natural phenomena.

1.1. APERIODIC TILINGS, HIERARCHICAL TILINGS

The possibility of an aperiodic set of prototiles, in the plane or elsewhere,
was essentially ignored until H. Wang and R. Berger began investigating
connections between tilings and undecidability. In the early 1960’s Wang

'The condition really is mild: we must be able to choose vertices and edges for our
tiles such that the vertices/edges of the parent coincide with those of the children and
such that the vertices/edges of sibling supertiles coincide.
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encoded arbitrary Turing machines as tilings of the plane. However he re-
quired a somewhat awkward restriction— the placement of a “seed” tile to
begin the computation. In 1964 Berger removed this restriction by con-
structing an underlying hierarchical structure; this structure provided ar-
bitrarily large, enclosed domains for the run of the machine [1].

Berger thus could answer that the “Domino Question” is undecidable;
that is, there is no an algorithm to decide whether any given set of prototiles
admit a tiling. Berger’s tiles admitted a tiling if and only if the underlying
Turing machine did not halt: If every set of prototiles admitting some tiling
admits a periodic tiling, one can produce an algorithm to check whether
any given set of prototiles actually admits a tiling. Thus Berger produced
an unexpected corollary— there are sets of prototiles that do tile the plane,
but cannot do so periodically! He gave such a set, of some 20,000 tiles.

By 1971 R. Robinson had produced a much smaller set of six prototiles
and streamlined Berger’s general result as well in an especially lovely and
readable paper [20].
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Figure 3. An aperiodic collection of square lattices and Robinson’s tiling

Robinson’s set of prototiles enforced aperiodicity by ensuring a specific
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structure was formed: an infinite hierarchy of similar square lattices in the
plane (figure 3). The collection as a whole is aperiodic, since no translation
can leave every scaled lattice invariant.

R. Penrose found his celebrated tiles in 1972 [15]. The Penrose tiles have
become canonical examples of aperiodic tiles, for they are both aperiodic
hierarchical tiles but also are quasiperiodic (see below).
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Figure 4. The penrose rhombs

Many other examples of aperiodic heirarchical tilings have been found
since. In particular R. Amman, J. Socolar, and L. Danzer have constructed
many elegant examples [10],[24],[4]. C. Radin has produced matching rules
for the Conway pinwheel [17]. S. Mozes gave a general method for construct-
ing specific class of aperiodic hierarchical tilings [14], and as described, a
very general method is given in [6].

Only three other methods of constructing aperiodic tiles have emerged:

N.G. De Bruijn pointed the way to the second interpretation in 1981:
aperiodic tilings could arise as projections of slices through a higher dimen-
sional lattice [2]. That is, just as the penrose tiles appear to be projections
of cubes, they indeed are, in a nice manner: the rhombs of the tiling are
projections of the squares lying in a certain slab through a five dimensional
cubic lattice. This “slice and project” method of constructing aperiodicity
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has been very much studied. Recently Le T.T.Q. has given matching rules
for a wide class of such tilings [12].

In 1988, Peter Schmitt gave a third class of aperiodic tiling— tilings
arising from a single prototile in £2. These tilings are not isotropic and thus
Schmitt introduced a new symmetry of space. This example was extended
upon by Conway and Danzer [3].

In 1996 a fourth, completely new method of constructing aperiodic
tilings has emerged: J. Kari has given a construction returning all the way
to Wang for inspiration. Essentially he avoids the need for a seed tile by
running infinite computations on infinite sequences [11]. Kari and K. Culik
are beginning to extend this exciting work.

1.2. A VARIETY OF SUBSTITUTION TILINGS

We pause for a few examples of substitution tilings— heirarchical arrange-
ments of tiles in the plane. A more lengthy discussion of certain technical
issues can be found in Appendix A of [6]; a formal discussion is in Section
1.2 of [6].

The substitution tiling on the left of figure 5 is periodic and admits an
infinity of hierarchies. Generically, however, if we use marked squares the
resulting substitution tiling admits only one hierarchy! (That is, the tiling
on the right has unique decomposition. Solmyak has proved that aperiodic
hierarchical tilings for which a certain natural condition is satisfied have
unique decomposition.)
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Figure 5. Two quite distinct substitution tilings

In figure 6 are a number of examples, clockwise from upper-left: the
“Sphinx”, discussed at length in [Godr] with matching rules provided by
E.A. Robinson [RobE]; the “Pinwheel”, found by Conway with matching
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rules provided by Radin [Rad]; a “Dimer” tiling, with matching rules found
by E.A. Robinson; a triangle tiling found by the author; a triangle tiling
found by Danzer and featured in Appendix B of [6]; and the “Half-hex”,
with matching rules provided by Socolar [Soc]. These examples all general-
ize in a variety of ways.

Figure 6.  The Sphinx, the Pinwheel, the Half-Hex and the Dimer, and two triangle
tilings

Our last example, however points the way towards a far more general
setting. Here we are no longer restricted to Euclidean congruences. We
still might say that all the quadralaterals of a given level in the hierarchy
are congruent, and more or less leave the geometry at that. In this way,
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substitution structures— addresses— may gain great utility, with widespread
applications.
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Figure 7. A substitution tiling?

2. Addresses

The following is developed more fully in [9] and [6]. The reader is asked
to consider the useful properties of graph paper, or a ruler, as illustrated
at the top of figure 8. First, each point on the paper or ruler is located
to arbitrary precision through algorithmically produced strings of digits.
These strings of digits have a hierarchical structure.

Although points are identified by infinite strings of digits, these strings
are not necessarily unique. For example (in binary representation) .010 =
.001; nonetheless, there are simple algorithms that can identify when two
strings refer to the same point (indeed, we learn such an algorithm as
children).

Finally, the geometry of the space is reliable with respect to the ad-
dressing given by the graph paper or ruler. A certain geometry is closely
bound to the particular coordinates imposed by the graph paper.
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.1001010011...
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0100..= 1100..=
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.011.. 0.11..

Figure 8. A ruler (base 2)

We will use the L-tiling to illustrate our addressing scheme. Consider
the following;:

First, label each image of the L-tile in the substitution rule. There are
two games we might like to play: label points in an L-tile, and label L-tiles
in the tiling.

To be useful, this labeling must have a few properties: We would like
this labeling to be algorithmic, and algorithms to be available to tell us
when two labels describe adjacent L-tiles, or given a label what the labels
of adjacent L-tiles are. Similarly, we might allow points to labeled in more
than one way, but at least want an algorithm to determine when two labels
describe the same point; anda way to find, given some label, the other
labels describing the same point. Finally, we would like the addressing to
be sensitive to the geometry of the substitution scheme.

So begin with addresses for inflations of a single tile. We start with a
e, a decimal point. If our original tile is, in say, the inside corner of an
inflated L-tile, we label ae its position with respect to the larger tile. If this
larger tile is in, say, the outer corner of a twice inflated L-tile, the label
of the smallest tile with respect to this larger tile is bae. In this fashion
we can describe positions of tiles with respect to arbitrarily large L-shaped
supertiles through a string x,,...x;e, x; € {a,b,c,d}.

In fact, these strings are exactly the words in the regular language given
by the “substitution graph” (a finite state automaton) in figure 9. (The
nodes of the graph correspond to the original tiles; the arrows to the images
of the tiles in the substitution. Addresses are directed paths in the graph.
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substitution graph

Figure 9.  Addresses

A more interesting example is in figure 7 of [6]). Hence these labels are
algorithmic.

Indeed we can describe positions in “infinitely large supertiles” ...xje.
These infinitely large supertiles might be tilings of the whole plane, but
could be a tiling of just a portion of the plane; again it is straightforward
to construct an automaton to test which case the address describes. For
example, it is clear that any infinite-to-the-left string ...x;...e, for which
there is some N with x; = a for ¢ > N, describes a tile in an infinitely large
supertile covering three-quarters of the plane, whereas a “generic” string
most likely corresponds to a tile in an infinitely large supertile th at covers
the entire plane.

Paradoxically, there are uncountably many distinct infinitely large su-
pertiles, even if we allow equivalence up to isometry: there are simply un-
countably many infinite-to-the-left-strings; moreover, two strings describe
equivalent (up to a isometry) infinitely large supertiles if and only if the
strings are equivalent to the left of some digit.

In [6] this labeling of hierarchies is precisely what we show is recreated
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by matching rules.

Many interesting tricks can be performed [9]; for example, how can one
detect that when strings describe adjacent L-tiles in some infinitely large
supertile? In figure 10 a portion of an automaton to carry out such a check
is illustrated. (A machine of this sort is a Mealy machine). Strings of digits
simply are paths that follow the arrows; infinite-to-the-left strings are thus
paths that have no beginning but do terminate. Two strings ...x;...e and
...y;...e describe adjacent L-tiles if there is a path with each arrow labeled
x;/y;. The portion shown here illustrates the adjacency of the strings in
boldface in figure 9. The reader is encouraged to complete this finite state
automaton (there is one state in the automaton for each kind of edge that
appears as we inflate the original L-tile). 2

ala

b/b m m
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c/d
ole thus
d/d ...bacbcbbcbd
=...baccdbbdbc

Figure 10. A Mealy machine describing adjacencies along the indicated edge

Similarly we can describe points in a tile as infinite-to-the right-strings
®xp..., and of course points in infinitely large L-tiles as bi-infinite strings.
Again, points may be described by more than one string. Strikingly, the
same Mealy machine that descibes adjacency of tiles also describes when
strings label the same point, and can be used for identifying pairs of infinite
supertiles that can be matched to make a substitution tiling of the full
plane.

3. Keys

We now turn a technique for unambiguously encoding the hierarchy: local
and regional keys.

The goal here is to encode the labelings of all tiles in a substitution
tiling only using a finite amount of information in each tile. For now we
will assume that somehow finite amounts of information can be compared

2Such an automaton can always be found up to some condition on the substitution
tiling; the author believes that requiring vertex-to-vertex is more or less sharp.
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between neighboring supertiles and between a supertile and its parent and

children.

The author imagines an infinite community piecing together a family
tree through the exchange of brief postcards.

We use asimple idea: certain tiles— keys— are to determine large amounts
of the tiling. Every tile is labeled with the last digit of its address: that is, its
intended position with respect to its parent. Keys, however, will be labeled
with one additional digit, giving the position of some ancestral supertile
with respect to its parent.

We choose all the tiles labeled, say, a to be local keys and all the tiles
labeled, say ¢ to be regional keys. Thus a label ax indicates the tile is in
position a with respect to its parent, and its parent is in position x with
respect to its parent. Now if x is itself a key, this parent is supposed to carry
an additional label. This label is tucked into the regional key adjacent to
our original tile. That is, suppose the parent supertile is supposed to be
labeled xy. Then the local key within this parent is ax and the regional
key within this parent is cy. Of course if the parent is not itself a key, y is
vacant.

In this fashion, the entire hierarchy can be encoded with only one or
two digits in each tile — if information can be transmitted over arbitrary
distances from regional keys to the boundary of the supertile the key labels.
In figure 11 a portion of an L-tiling is encoded. The labels b and d, and
unfilled keys ¢ have been left out of the illustration for clarity.

This simple mechanism is, forgive the author, the “key” to the whole
construction (although it is deeply disguised and virtually unidentifiable in

[6])-

4. Mechanisms

We prove the Theorem as follows: we first construct a new set of marked tiles
and matching rules by examining structures in supertiles fo some bounded
size. We define ”well formed supertiles” as configurations of the new tiles
that are in some essential way equivalent to supertiles in the original tiling.
Then we proceed by induction:

We assume that every tile in the matching rule tiling lies in a well-
formed supertile of level n, and show this implies every tile lies in supertile
of level n 4+ 1.

The key, of course, is selecting the right structures to encode in the new
marked tiles. Consider what properties we need from supertiles to force
them to organize into the next larger size supertile:
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Figure 11. FEncoding addresses through local and regional keys

Supertiles should be the correct shape and size.

Supertiles should be labeled with their intended position with respect
to their parent.

Supertiles should be “combinatorially inert” except at a few special
points. (Since every neighborhood in the tiling is to contain only a
finite amount of information— and so can only serve a finite number of
supertiles— whereas a given point may be on the boundary of infinitely
many supertiles.)

At these combinatorially active sites, sibling supertiles are to compare
labels, fix their relative positions and orientations, and transmit in-
formation to the parent. “Sites” and “terminals” play this role in the
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construction.

— Finally there must be some structure to transmit information from
the sites connecting children to parent to the sites connecting parent
to grandparent. Moreover, every neighborhood in the tiling should only
lie in finitely many of these networks. (As a bonus, however, such a
network is the ideal place to store key labels). “Skeletons” and “wires”
play this role in the construction.

However, it is not hard to always construct such structures in any given
substitution tiling. The seemingly endless technical details in [6] arise be-
cause of numerous special situations.

We will only discuss one of the structures we exploit: the skeleton, a self-
organizing structure that simultanously contains and transmits information
about each supertile.

In the lower left of figure 12, the substitution for the pinwheel tiling
[Rad] is shown; above and to the right skeletons for three generations of
supertile are shown. Note that the skeletons are each connected sets, are
connected to each other at special points (sites), include all the “highest
level” edges in the supertile, every edge is in only finitely many (i.e. one)
skeletons, and that the skeletons are all similar.

Figure 12. Skeletons

Given the children supertiles are formed correctly, in order for the par-
ent’s skeleton to form correctly, we must know the locations of the endpoints
(“terminals”) of each of its edges. If the endpoints lie on the skeletons of
lower level supertiles, no further work is needed. However, we sometimes
need an additional structure: we link certain terminals (“mesovertices”) to
the skeleton through a series of lower level supertiles. Such a series is a
“vertex wire”. A supertile may thus carry, for certain of its vertices, certain
information associated with some higher level supertile.
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5. On the utility of substitution tilings

The title of this section admitedly overreaches its contents. But it is the
author’s belief that, ultimately, this will make a fine title for a much longer
work. At the moment, this is only conjecture.

We will give two, simple, “theoretical applications.”

1) Grids are used for any number and variety numerical simulations.
There is a seeming trade-off that must be faced by the designer of the
simulation:

One can choose a highly regular grid, in which one can easily address
locations, adjacencies, etc. without the use of direct pointers between neigh-
boring cells. But such a grid may not easily conform to the geometry of the
simulation, or worse, the geometry of the grid may introduce extraneous
results. For example, suppose we simulate the geometry of the circle on a
very fine square grid. Certain properties, such as area, can be calculated to
arbitrary precision by subdividing the grid. But others, such as perimeter
will never be approximated, regardless of how fine the grid is. In fact, even
the length of a generic line segment is very badly estimated by a square
grid, no matter how fine.

To remedy this one can choose a grid that appears irregular, that is
transparent to the geometry of the simulation. But in such a grid, it is
difficult to “look up” a given location; the grid is constructed only through
local information: which cells are adjacent to which others. This also carries
a fairly large memory cost, since all adjacencies must be encoded.

Substitution tilings provide a middle road. They are clearly algorithmic
and have all the advantages of a rigid hierarchical structure. On the other-
hand, they admit an extraordinarily rich family of possible geometries. To
give one example, substitution tilings generically are isoparametric— that
is, one can “usually” approximate arbitrary smooth curves to arbitrary
precision.

2) Substitution tilings provide models of cell-division and growth, often
to great effect [16]. Whether matching rules or addressing are actually useful
is beyond this author’s expertise. But it can be said that matching rules
encode local “well-formedness”. Qur main theorem can be interpreted as:
every sufficiently regular hierarchical structure can be endowed with local
conditions such that if the structure is not faithfully reproduced, the local
conditions are not satisfied. One might imagine a growing embryo; local
conditions might exist which can detect a global defect as soon as it arises.
(Whether such a mechanism actually exists is of course quite far beyond
the scope of this discussion)
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Finally, the proof of the theorem is an exercise in self-organization, a

fundamentally interesting phenomenon.
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