Comments on: EK. The Law of Small Numbers http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/ The Math Factor Podcast Site Fri, 08 Aug 2014 12:52:06 +0000 hourly 1 https://wordpress.org/?v=4.9.25 By: Casial http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/comment-page-1/#comment-653 Fri, 06 Nov 2009 03:22:22 +0000 http://mathfactor.uark.edu/2008/09/04/ek-the-law-of-small-numbers/#comment-653 In which movie the fibonacci sequence is part of the movie?
I cant remember the name *grrr*

]]>
By: dfollett76 http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/comment-page-1/#comment-407 Sat, 08 Nov 2008 15:45:08 +0000 http://mathfactor.uark.edu/2008/09/04/ek-the-law-of-small-numbers/#comment-407 The winner is no longer nongoogleable.

]]>
By: denken http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/comment-page-1/#comment-379 Sat, 04 Oct 2008 10:51:05 +0000 http://mathfactor.uark.edu/2008/09/04/ek-the-law-of-small-numbers/#comment-379 There is an amusing elegance to some of these– Coleman’s entry for example, though large, surely is among the lowest nongoogleable numbers ending in a trail of five 0’s!

]]>
By: strauss http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/comment-page-1/#comment-373 Thu, 18 Sep 2008 13:53:21 +0000 http://mathfactor.uark.edu/2008/09/04/ek-the-law-of-small-numbers/#comment-373 Here are some of the nongoogleable numbers we received, suitably disguised:

J. Coleman ONE 8100110000 ZERO
M. Croucher ONE 92345211 NINE
D. Harris: ONE 177899871TWO
B. Tittle: ONE 22232512 ONE
T.I. Birkenes NINE 2323133 ONE
K. Siefkin: TWO 9036486 SEVEN

and the unmistakable winner in this round of searching:
M. Croucher: TWO 1753318 FOUR

There is an amusing elegance to some of these– Coleman’s entry for example, though large, surely is among the lowest nongoogleable numbers ending in a trail of five 0’s!

]]>
By: strauss http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/comment-page-1/#comment-372 Wed, 17 Sep 2008 19:13:53 +0000 http://mathfactor.uark.edu/2008/09/04/ek-the-law-of-small-numbers/#comment-372 Another opportunity to catch an error in the Math Factor! Steve is on the ball and the ratio of 0’s to 1’s is indeed sqrt(2) to 1.

The fibonacci sequence appears in:

0->001
1->01

0
001
00100101
001001010010010100101
etc

]]>
By: stevestyle http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/comment-page-1/#comment-371 Tue, 16 Sep 2008 08:47:26 +0000 http://mathfactor.uark.edu/2008/09/04/ek-the-law-of-small-numbers/#comment-371 The number of 0’s, 1’s and the total number of digits all follow the rule: x(n+2) = 2x(n+1) + x(n).

The ratio of 0s to 1s is the square root of two.

]]>
By: stevestyle http://mathfactor.uark.edu/2008/09/ek-the-law-of-small-numbers/comment-page-1/#comment-370 Mon, 15 Sep 2008 21:20:01 +0000 http://mathfactor.uark.edu/2008/09/04/ek-the-law-of-small-numbers/#comment-370 Is the fibonacci thing true? I have the number of 0’s in the fourth line as being seven and it isn’t true from then on.

]]>