Comments on: Follow Up: Prime Dice http://mathfactor.uark.edu/2008/01/follow-up-prime-dice/ The Math Factor Podcast Site Fri, 08 Aug 2014 12:52:06 +0000 hourly 1 https://wordpress.org/?v=4.9.25 By: edi15ta http://mathfactor.uark.edu/2008/01/follow-up-prime-dice/comment-page-1/#comment-589 Tue, 08 Sep 2009 20:59:00 +0000 http://mathfactor.uark.edu/2008/01/09/follow-up-prime-dice/#comment-589 my solution involves some smaller numbers:
(0;6;12;36;42;96) and (5,17,31,47,61,71)

]]>
By: trivial34 http://mathfactor.uark.edu/2008/01/follow-up-prime-dice/comment-page-1/#comment-282 Sun, 23 Mar 2008 23:19:54 +0000 http://mathfactor.uark.edu/2008/01/09/follow-up-prime-dice/#comment-282 I did a long search to find this solution which has only multiples of 6 on one die:
{6,66,1746,2676,5406,21156}
{1,7,13,31,37,65}

]]>
By: Jesse http://mathfactor.uark.edu/2008/01/follow-up-prime-dice/comment-page-1/#comment-247 Tue, 29 Jan 2008 16:12:49 +0000 http://mathfactor.uark.edu/2008/01/09/follow-up-prime-dice/#comment-247 (7 97 16057 19417 43777 1091257)
and (0 4 6 10 12 16)

should work. The first set are prime sextuplets I found
here http://anthony.d.forbes.googlepages.com/ktmin.txt
and the second set are the prime difference intervals.

]]>
By: Armando http://mathfactor.uark.edu/2008/01/follow-up-prime-dice/comment-page-1/#comment-219 Sat, 12 Jan 2008 00:41:53 +0000 http://mathfactor.uark.edu/2008/01/09/follow-up-prime-dice/#comment-219 I found one possible solution: (1, 3, 13, 27, 43, and 57); (4, 10, 16, 40, 70, and 136).

]]>