Comments on: AB. The Rational Ruler http://mathfactor.uark.edu/2005/10/the-rational-ruler/ The Math Factor Podcast Site Fri, 08 Aug 2014 12:52:06 +0000 hourly 1 https://wordpress.org/?v=4.9.25 By: Daniel http://mathfactor.uark.edu/2005/10/the-rational-ruler/comment-page-1/#comment-657 Fri, 13 Nov 2009 13:48:43 +0000 http://theserver.uark.edu/~strauss/?p=50#comment-657 Yes, but some of these are duplicates.  For example, 4,9,10,11 is the same as 1,2,3,8 and 1,5,9,11 is the same as 1,3,7,11.

]]>
By: Travis http://mathfactor.uark.edu/2005/10/the-rational-ruler/comment-page-1/#comment-656 Tue, 10 Nov 2009 16:08:09 +0000 http://theserver.uark.edu/~strauss/?p=50#comment-656 I gave this problem to my Algebra I students.  They found 13 different solutions.
1,2,3,8    1,2,6,9    1,3,5,11    1,3,7,11    1,4,5,10
1,4,7,10    1,5,9,11     1,7,8,10    1,7,9,11
2,4,5,11    2,5,8,11    3,6,10,11    4,9,10,11
 

]]>
By: Daniel http://mathfactor.uark.edu/2005/10/the-rational-ruler/comment-page-1/#comment-586 Sat, 29 Aug 2009 10:19:40 +0000 http://theserver.uark.edu/~strauss/?p=50#comment-586 I think I now have the complete list of solutions
1,3,5,11
1,3,7,11
1,2,3,8
1,2,6,9
1,4,5,10
1,4,7,10
1,7,8,10

]]>
By: Ben Weiss http://mathfactor.uark.edu/2005/10/the-rational-ruler/comment-page-1/#comment-584 Mon, 24 Aug 2009 15:13:37 +0000 http://theserver.uark.edu/~strauss/?p=50#comment-584 Alternative solution to 12″ rod puzzle.
1,2,6,9
Ben Weiss (age 10)

]]>