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1 Introduction

Symmetric images have been common in virtually every culture on Earth at least since the

Neolithic. Systematic methods for generating symmetric patterns have been developed for

centuries and this has continued apace with the rise of computer technology. In essence,

artists, artisans, designers and programers have always produced symmetric images by se-

lecting some motif and replicating it in a regular manner. Here we give a new method for

selecting motifs for replication using \contravarient distributions".

Here, we will �rst quickly outline the general methods used for producing patterns to

date; all prior art will be seen as applications of these methods. We then will outline this

new technique. We have suppressed the mathematics as much as possible and kept things

informal.1

To begin, consider the image in Figure 2. The motif is a rectangle, marked with a

swirl. It is replicated by rotating the motif by 180 degrees about the marked points on the

rectangle. This procedure is repeated for each of the newly generated motifs, ad in�nitum

1Accuracy requires, though, a few terms which the non-mathematician is free to ignore. We will try to

con�ne this to footnotes. Strictly speaking, we are considering discrete group actions on the plane, sphere

and other geometric spaces
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Figure 2: The regular repetition of a motif
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Figure 3: Adjusting the fundamental domain

(for the mathematician) or until a large enough piece of the pattern has been produced (for

the designer).

There are only a few ways such a repetition can be carried out. First, there are only four

kinds of transformation in the Euclidean plane: translations (a slide), rotations about point,

reections across a line, and glide reections, which consist of a reection and translation

together. Up to trivial notions of equivalence, there are exactly 17 ways these operations

can be combined to form a symmetrical pattern with a �nite motif2

(There are a few more kinds of planar symmetry with in�nite motifs or such that the

pattern does not cover the whole plane. In addition, one can discuss symmetries of the

sphere, or other geometric spaces. Our comments apply to all of these as well.)

These 17 types were �rst classi�ed by Federov in 1885, then rediscovered by Poly�a,

Niggli and others in the 1920's. Gr�unbaum and Shephard gave a new derivation of this

classi�cation in the late 1970's. At about the same time W. Thurston gave an extremely

elegant approach, which seems to give the \correct" mathematical perspective on this prob-

lem. The symmetry of Figure 2 is denoted p2 in the \international symbol" system widely

used by crystalographers, and 2222 in the newer notation developed by J. Conway based on

Thurston's classication.

However, it is quite interesting that this same classi�cation was carried out, more or less

naively, over and over again throughout the world over thousands of years. All 17 types of

planar patterns appear, for example, in the pottery of the Pueblo Indians, the Alhambra,

and elsewhere. Virtually every culture makes use of at least several of these types.

Implicit in the idea of generating a pattern using a motif is that of a \fundamental

domain". A fundamental domain for a pattern is a tile that can be used as the motif; after

replicating the tile, these fundamental domains exactly cover the pattern. For example, in

Figure 2, the fundamental domain is a rectangle. For a given symmetry type, however, there

may be in�nitely many possible choices for fundamental domain.

For example, in the upper left of Figure 3, one edge of the original rectangle is being

steadily modi�ed, producing an in�nite family of new fundamental domains. This can be

carried out in general; the only constraints are that edges that correspond in the pattern

must be changed together, and that the edges as a whole remain embedded (i.e. don't

2That is, in the Euclidean plane, up to a�ne conjugacy there are exactly 17 discrete group actions with

compact fundamental domain.
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Figure 4: Selecting a portion of an image as the motif

criss-cross one another). But this kind of transformation does not change the particular

way the fundamental domains meet one another| in this case, for example, they still meet

four-to-a-corner. They remain of the same \Heesch type".

Up to a certain notion of equivalence, there are only a few distinct types of possible

fundamental domain, �rst classi�ed by Heesch in the 1930's and then independently by

M.C. Escher about ten years later.3 A given symmetry type may allow several distinct

these \Heesch types" of fundamental domain| p2 for example admits four Heesch types of

fundamental domain| but only �nitely many, and in fact, all together, there are only 42

(?) Heesch types for planar symmetries.

It was precisely by analyzing the possible Heesch types of fundamental domains that

allowed M.C. Escher to create his famous and remarkable prints. As is well known, he

realized one could modify the edges of a given fundamental domain to resemble an image of

any number of things. In fact, his basic technique is so useful that it is now used to excite

and educate geometry students all over the world.

2 Software

With the advent of computer imaging techniques, various software packages have now been

developed allow the user to select a portion of an image to use as the fundamental domain

for a symmetric pattern.

This idea is illustrated in Figure 4; our original fundamental domain of Figure 2 has

been placed over an image of a cup of co�ee, and the resulting selection has been replicated

to produce the pattern at right. The result is somewhat unsatisfying: one can clearly see

the boundary of our original rectangle where it abrubtly truncates the image. To a limited

3Again, the new techniques of Thurston give a much more elegant classi�cation of the types of funda-

mental domains.
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Figure 5: Adjusting the selection of an portion of an image as motif

degree, this technique has been implemented in Tess, Terrazo, and a small number of other

pieces of software.

To date, only one commercial piece of software, KaleidoMania, has gone as far as the

technique in Figure 5: in this �gure, the edge of the fundamental domain has been modi�ed,

as in Figure 3, in order to follow the handle of the cup more closely (at the expense of the

corresponding piece of rim).

There is one other technique that has appeared: \equivarient" drawing tools. As one

brushes with an equivarient brush, for example, one sees copies of the brush at all corre-

sponding points in the pattern.4 With such a tool, one can draw designs such as that of

�gure 1. This has been implemented in La�te and Kali.

All of this must be considered prior art; though no one single piece of software or ***

encompasses all the ideas presented so far, each idea has appeared somewhere or another.

In practice, however, there are technical di�culties in applying the idea of Figure 5 in full

generality.

3 Contravarient distributions

We now introduce the idea of \orbits". In a symmetric pattern, there are many copies of

each point in the original motif. At left in Figure 6, for example, the point labeled a lies at

the tip of our swirl. The corresponding points in the pattern, at the tip of each copy of the

swirl, form a single orbit. Similarly, each point in the pattern lies in exactly one orbit. And,

in essence, a fundamental domain is a tile consisting of exactly one point from each orbit.

The symmetric pattern is produced by replicating this tile. In the symmetric pattern, all of

the points in each given orbit are colored precisely the same way.

4Hence the term \equivarient": each copy of the brush moves together
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Figure 6: Orbits in a pattern

We now can discuss the new idea more fully. We provide an alternative method for

selecting how each orbit should be marked in the pattern. Recall that all previous techniques

of this sort have made this selection by �rst chosing a fundamental domain; each orbit

corresponds to a point in the fundamental domain, and is colored in the same way as this

point.

The essential idea here is to allow the fundamental domain5 to consist of, say, half a

point here, a tenth of a point there, etc, so long as the total value for any given orbit is 1.

More precisely: a \distribution" is simply a function assigning to each point in the plane

some value. A distribution is \contravarient" under some symmetry if the values of the

points in each orbit add up to 1. Given a contravarient distribution, we create a symmetric

pattern by taking the weighted average of the points in the original image; the weights are

the values of the distribution.

That is, an image is a map I : X ! C, where C is some space of colors or other

quantities; we assume that we may take weighted averages of values in C. A distribution

is a map D : X ! R, where R is the set of real numbers. A contravarient distribution

satis�es:

For all orbits O,

�x2OD(x) = 1

A symmetric image Is is then de�ned by taking for each orbit:

Is(O) = �x2OI(x) �D(x)

and setting for all x 2 O, Is(x) = Is(O), producing the output image.

For example, in the following �gures, we will illustrate distributions with shades of gray.

If a given point x is shaded black, D(x) = 0; if x is white, D(x) = 1; if x is 50% gray,

D(x) = :5, and so forth. We will mark the rotation points with white circles.

5The term is no longer accurate, technically, but we continue to use it informally.
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Figure 7: Using a distribution to de�ne a fundamental domain

The images at left in Figure 7 and at top in Figure 9, and both images in Figure 8

represent contravarient distributions. The sum of values D(x) in each orbit add to one, or

to put it another way, the grayscale values over corresponding points in the symmetry sum

to white.

At left in Figure 7, the contravarient distribution takes on only values 1 and 0; in other

words, there are no shades of gray in the illustration of the distribution. At right in in

Figure 7 we see the distribution overlaid on the original image. The distribution in this

�gure produces precisely the same image as that at right in Figure 5: in each orbit O, there

is precisely one point xO with value D(xO) = 1, corresponding to a point in the fundamental

domain of Figure 5. The remaining points x in each orbit have D(x) = 0. Consequently, we

color the points in the orbit by

Is(O) = �x2OI(x) �D(x) = �x2O;y 6=xOI(x) � 0 + I(xO) � 1 = I(xO)

So this method certainly encompasses earlier techniques. But allowing the distributions

to take on a wider range of values is quite powerful. We can now anti-alias| or bleed out|

the edges of our selection quite easily, by having the values of the distribution gently slope

down from 1 to 0. We are no longer constrained by choice of Heesch type, and can freely

select any sort of possible fundamental domain we please. In fact, we no longer need to have

fundamental domains that are in a single connected piece. But most importantly, we can

produce a completely new sort of symmetric images.

In Figure 9 we illustrate a more elaborate contravarient distribution. A portion of one

orbit O is singled out specially with shaded circles; the shades correspond to the values

of the distribution at these points. At lower left, we have illustrated this orbit O again,

superimposed on the original image; here there is now room for labels a1; : : : ; a5 for the

points in O that lie inside the bounds of the picture.

We have

D(a1) = :54
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Figure 8: More contravarient distributions

D(a2) = :05

D(a3) = :18

D(a4) = :04

D(a5) = :19

There are actually in�nitely more points a0 in the orbit that lie outside the range of the

picture; each of these has D(a0)=0. Note then that

�a2OD(a) = 1

Now we color the corresponding points in the output image by

Is(O) = �a2OI(a) �D(a) = :54I(a1) + :05I(a2) + :18I(a3) + :04I(a4) + :19I(a5) + 0 : : :

Similarly, all points in all orbits in the output image are colored in a similar fashion,

producing the image in the lower right of Figure 9.

4 The algorithm

First, one must construct and edit contravarient distributions. One may begin with any

standard fundamental domain for a given symmetry and construct a distribution as we

did in Figure 7. Then the user may use \contravarient" drawing tools (in contrast to the

\equivarient" tools briey discussed above): in essence, as one adds values to one point in

an orbit, one must subtract values from all the other points in the orbit so that the sum of

all the values in the orbit remains 1.6.

For example, if the user wishes the value Dnew(a1) = :68, an increase of :14 from the

value in Figure 9, a total of :14 must be subtracted from the other points in the orbit. One

6Hence \contravarient": the copies of the drawing tools act in precisely opposing ways
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Figure 9: A more interesting example
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must choose how this amount to be subtracted is spread across these points. This may be

done in many ways, but we take the \fairness" approach and scale things proportionately.

For example, D(a3) = :18, which is :18=:46 of the total value among the points at which

we will be subtracting. We will be subtracting a total of :14 so a3's share is :14 :18
:46

and

Dnew(a3) = D(a3)� :14 :18
:46

� :13

Thus, for each i 6= 1, we set

Dnew(ai) = D(ai)� (Dnew(a1) �D(a1)) �
D(ai)

1�D(a1)

Once the contravaient distribution is chosen, one simply scans across the output image;

at each point, one looks up the points in orbit of the corresponding points in the input

image and the distribution, and then calculates the appropriate value for the point in the

output image.

5 Extensions

In fact, one can de�ne contravarient distributions in any setting for which one can de�ne

orbits for points. In particular, then, this algorithmapplies to a much wider range of settings

beyond creating regularly symmetric patterns (i.e. one does not need a discrete group action

in the plane, sphere, or elsewhere). For example, the pattern in �gure ?? is not symmetric in

a classical sense; yet one can de�ne orbits of points and so de�ne a contravarient distribution.

\Non-periodic" designs, such as that of Figure ??, have been widely studied and there are

many techniques for their production. Many of these techniques produce what appear to

be highly irregular patterns, yet have very clean underlying mathematical structure.

This algorithm, applied to such types of non-periodic designs, will be able to produce

natural looking textures that are convincingly irregular. But the underlying mathematical

regularity will allow the production of these textures to be very rapid.
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