

5444, [0][1]*

on a constant negative curvature surface
Chaim Goodman-Strauss and Eugene Sargent

2 | 5444, [0][1]* | Chaim Goodman-Strauss | Eugene Sargent

The intrinsic geometry of this surface is forced by the lengths and angles of its pieces.
Any surface with this instrinsic structure must buckle and bend in this general way.
The paper model above is the basis of the specific extrinsic geometry of the final steel sculpture.

We build surfaces of negative curvature, from strips of flat material: The celebrated GaussBonet Theorem demonstrates that the total curvature of a disk-like region of a surface (for example, one of our units) is precisely captured by measuring the turning excess or deficit around its boundary. For example, consider this decagon with ten 120° angles; as we go around its boundary, we turn 60° ten times, for a total of $600^{\circ}-$ an excess of 240° over the customary 360° for flat surfaces. This excess is a precise measurement of the total negative curvature across the decagon.

We can control this with exquisite precision. At left is a recent sculpture of a constant negative curvature surface made from pentagons and squares; the angles at the corners are worked out precisely so that the total curvature per unit of area (i.e. the Gaussian curvature) is the same across the entire surface.

The same piece of tiling is shown in the Poincaré disk below, only differing in scale and placement, but fundamentally, instrinsically, the same geometry.

Archimedean of the form *[0][1] $(5,4,4,4)$

[^0]

Cut up the sheet opposite, along the red lines.

Assemble as pictured,
and make yourself a surface of constant negative curvature!!

Eugene Sargent | Chaim Goodman-Strauss | 5444, [0][1]*

After water-jetting out the pieces, Eugene began to model each one off of a corresponding

His specially made bending machine, first used
for the Gyring Gyroid, sure came in handy.

The sculpture took shape in the driveway, and soon was hung for the first time.

Or maybe not.

This code reads the same upside down as right side up, but not for right-to-left nor up-to-down nor on the diagonal.

It is designed to be easy to drill into dozens of pieces, quickly and to withstand

powder coating.

Heroic efforts saved the day!

And soon it came together.

The original paper model (yellow), and the sculpture; the lime green model is at $1 / \sqrt{ } 2$ scale to the yellow.

22 | 5444, [0][1]* | Chaim Goodman-Strauss | Eugene Sargent

[^0]: Equilateral polygons: the vertex angles are $85.8676^{\circ} \quad 102.397^{\circ}$

