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We begin with a question:

Can this tile be used
to form a tiling of the
entire plane?

How can you tell?

Mann (2007)

Is there a general method to tell
whether or not a given tile admits a tiling?



Many of these examples are very badly behaved.

This example (Myers 2003) has isohedral number 10, the cur-
rent world record



Many of these examples are very badly behaved.

That is, the tile can form periodic tilings, but the tiles fall into at
least ten orbits; equivalently, the smallest possible fundamental
domain has ten tiles!

An isohedral number 10 example



Many of these examples are very badly behaved.

This example (Mann 1999) doesn’t admit a tiling, but you can
form quite large patches before things fall apart.



Many of these examples are very badly behaved.

It has Heesch number 5, the current world record– it can form
a patch with five “coronas" and no more.
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There is no reason to suppose these are the worst possible
examples—
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We have no idea (really) how they work, or what obstructions, if
any, there are to creating increasingly terrible tiles.



Many of these examples are very badly behaved.

There is no reason to suppose these are the worst possible
examples—
We have no idea (really) how they work, or what obstructions, if
any, there are to creating increasingly terrible tiles.

Again, Is there a way to tell whether a given tile admits a tiling
of the entire plane?



The obvious algorithm to try is
See how far you can get!



The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.



The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.
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region that we cannot cover.

Thm: If we can cover arbitrarily large regions, we can cover the entire
plane.
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More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

• If the tile does not admit a tiling, then there will be some largest
region that we cannot cover.

But this algorithm will never halt if the tile does admit a tiling.
So we make a modification.
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• As we proceed, we check to see if any of our configurations
could be a fundamental domain. If the tile admits a periodic
tiling, we can discover this too.



The obvious algorithm to try is
See how far you can get!

More precisely, we might enumerate all possible configurations
by the tile, trying to cover larger and larger regions.

• If the tile does not admit a tiling, then there will be some largest
region that we cannot cover.

• As we proceed, we check to see if any of our configurations
could be a fundamental domain. If the tile admits a periodic
tiling, we can discover this too.

This works fine— the algorithm will halt with a yes or no answer,
so long as nothing falls through the gaps— so long as every tile
either doesn’t admit a tiling or admits a periodic tiling.
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Surely this is the case! ?

Surely it is impossible for there to exist an aperiodic tile, that is,
a tile that does admit a tiling of the plane, but never a periodic
tiling.

Such a tile would have to force some sort of bad behavior at all
scales.

And surely there is a general procedure (or theorem, or theory,
or algorithm) that can determine whether a given monotile
admits a tiling of the plane.

How hard can this be?

The examples we see here should make us cautious.



The algorithm we outlined (enumerate all configurations,
covering larger and larger disks, until we either crash, or find a
fundamental domain) succeeds if there is no aperiodic tile.

If there is no aperiodic tile, then this algorithm solves both the
Domino Problem and the Period Problem for any given
monotile:

The Domino Problem for Monotiles:
Given a tile, does it fail to admit a tiling?

The Period Problem for Monotiles:
Given a tile, does it admit a periodic tiling?



That is:
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suppose every tile that does not admit a tiling has Heesch
number less than H.
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Moreover, suppose there is a bound H on Heesch number; i.e.,
suppose every tile that does not admit a tiling has Heesch
number less than H.

Then we would have an algorithm for checking whether a given
tile does not admit a tiling:

Simply enumerate larger and larger configurations, increasing
the number of coronas (shells). If we find a configuration with
more than H coronas, we know the tile admits a tiling.
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suppose that every tile that admits a periodic tiling has
isohedral number less than I.
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Then we would have an algorithm for checking whether a given
tile admits a periodic tiling:



Similarly, suppose there is a bound I on isohedral number; i.e.
suppose that every tile that admits a periodic tiling has
isohedral number less than I.

Then we would have an algorithm for checking whether a given
tile admits a periodic tiling:

Simply enumerate all configurations with up to I tiles; if we fail
to find a fundamental domain, then the tile does not admit a
periodic tiling.



And so we have
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And so we have
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?

?

?
?

?
These are all open questions.





Myers, Mann and others are generating increasingly complex
examples, via giant computer searches, that suggest that the
Domino problem may well be undecidable for monotiles, and
that there does exist an aperiodic monotile.
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Myers, Mann and others are generating increasingly complex
examples, via giant computer searches, that suggest that the
Domino problem may well be undecidable for monotiles, and
that there does exist an aperiodic monotile.

But as with all such problems

(Is Question A decidable for combinatorial objects in X)

the searches are increasingly intractable, and the generic
example does what it does for no particular reason.

(A “reason" is essentially an algorithm for deciding something!)

These tiles can be marketed as children’s toys, yet are an
example of Undecidability in action!
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Generally speaking, we specify a geometric space, and
combinatorial restrictions on what we mean by “tile", “matching
rule", etc.
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Generally speaking, we specify a geometric space, and
combinatorial restrictions on what we mean by “tile", “matching
rule", etc.

For example we might consider:

Tilings of E
2, by a single tile (as we’ve just considered)
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For example we might consider:

Tilings of H
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These same questions can be asked in a range of settings:

Generally speaking, we specify a geometric space, and
combinatorial restrictions on what we mean by “tile", “matching
rule", etc.

For example we might consider:

Tilings of E
2 by a shingle
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Generally speaking, we specify a geometric space, and
combinatorial restrictions on what we mean by “tile", “matching
rule", etc.

For example we might consider:

Tilings of E
2 by a disconnected tile

Each of these is strikingly different, and we must be explicit
about which setting we are considering!
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about which setting we are considering!



These same questions can be asked in a range of settings:

Generally speaking, we specify a geometric space, and
combinatorial restrictions on what we mean by “tile", “matching
rule", etc.

For example we might consider:

Tilings of E
2, by tiles that have colored edges, but satisfy an

arbitrary relation (for example, red may meet with green or blue,
but green may not meet blue)

Each of these is strikingly different, and we must be explicit
about which setting we are considering!



These same questions can be asked in a range of settings:

Generally speaking, we specify a geometric space, and
combinatorial restrictions on what we mean by “tile", “matching
rule", etc.

For example we might consider:

Tilings of E
3, by a single tile

Each of these is strikingly different, and we must be explicit
about which setting we are considering!



These same questions can be asked in a range of settings:

Generally speaking, we specify a geometric space, and
combinatorial restrictions on what we mean by “tile", “matching
rule", etc.

For example we might consider:

Etc.

Each of these is strikingly different, and we must be explicit
about which setting we are considering!
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(And there are more, similar kinds of implications)
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and certain questions in formal logic. He gave an easy proof
that the "Completion Problem" is undecidable, that is, that there
is no algorithm to decide whether a given set of tiles can form a
tiling of the plane containing a given configuration.
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tiling if and only if the machine fails to
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cidable, so too is the Completion Prob-
lem.



1) Tilings by a set of tiles, in E
2

In 1961, H. Wang noted connections between tiling problems
and certain questions in formal logic. He gave an easy proof
that the "Completion Problem" is undecidable, that is, that there
is no algorithm to decide whether a given set of tiles can form a
tiling of the plane containing a given configuration.

He constructed, for any Turing machine,
a set of tiles T so that a certain “seed”
configuration could be completed to a
tiling if and only if the machine fails to
halt. Since the Halting Problem is unde-
cidable, so too is the Completion Prob-
lem.

Note that the Domino Problem itself is decidable for the tiles Wang constructed.



In addition, Wang gave the algorithm we outlined above, for
tilings by a set of tiles in the Euclidean plane, and incorrectly
conjectured that the Domino Problem, in this setting, was
decidable; it was difficult to imagine that an aperiodic set of tiles
could exist.



In addition, Wang gave the algorithm we outlined above, for
tilings by a set of tiles in the Euclidean plane, and incorrectly
conjectured that the Domino Problem, in this setting, was
decidable; it was difficult to imagine that an aperiodic set of tiles
could exist.

(Again, aperiodicity is an amazing property: the tiles do admit
tilings, but somehow, just by fitting together locally, force some
sort of disorder at all scales.)



In 1966, R. Berger published a proof that the Domino Problem
is in fact undecidable, and gave the first aperiodic set of tiles.
(In a moment we’ll discuss how.)



In 1966, R. Berger published a proof that the Domino Problem
is in fact undecidable, and gave the first aperiodic set of tiles.
(In a moment we’ll discuss how.)

Gurevich & Koryakov (1972) modified Berger’s construction to
show the Period Problem, for planar sets of tiles, is undecidable
as well.
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problems, for planar sets of tiles, is the basis for a type of
popular puzzle:
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logical structure– essentially every possibility must be examined.



One might make the case that the undecidability of these tiling
problems, for planar sets of tiles, is the basis for a type of
popular puzzle:

Scuzzles
These puzzles are “amusing" precisely because they have no
logical structure– essentially every possibility must be examined.



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

The Robinson tiles (1971) were the first reasonably small
aperiodic set:



1) Every tile is either a         or incident to   

2) Can't have:  Only:

Hence:

3) So each         is part of:  

Hence, up to rotation,

every tile is in or next to:



4) These 3x3 blocks act like large        's

 & up to rotation,

every tile is in or next to

a 7x7 block:

 & up to rotation, every tile is in or next to a 15x15 block,  a 31x31 block, etc...

Consider a tiling by the Robinson tiles.  Any translation has a finite magnitude and

will translate some giant block onto itself. But this will not leave the tiling invariant.

Hence every tiling by the Robinson tiles is non-periodic and the tiles themselves

are aperiodic. 



(incidentally, this hierarchical framework provides the key to
Berger’s proof of the undecidability of the Domino Problem; in
effect, he runs Wang’s implemented Turing machines on larger
and larger domains in the hierarchy)



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

The Robinson tiles (1971) were the first reasonably small aperi-
odic set:



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

The Penrose (-Ammann-Conway) tiles (1972-78) are the most
famous example:



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

Ammann gave several examples (ca. 1978), including:



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

The trilobite and crab (GS, 1994):
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aperiodic Wang-tiles:



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

The Kari (-Culik) (1995-6) tiles are the smallest known set of
aperiodic Wang-tiles:



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

The Penrose (-Socolar-GS) tiles (1994-96):



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

What are the constraints on small aperiodic sets of tiles?



Berger’s initial aperiodic set of tiles was notoriously
complicated; subsequently, simpler aperiodic sets were found:

What are the constraints on small aperiodic sets of tiles?
Who knows?
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A simple modification of Berger’s construction shows the
Domino problem is undecidable for sets of tiles in E

n and H
m≥3



2) Tilings by a single tile, in E
n

In 1988, Schmitt gave an example of an aperiodic monotile in
E

3, later simplified by Conway and Danzer in 1993.

The SCD tile can only form sheets, that must be rotated as they
stack.



2) Tilings by a single tile, in E
n

In 1988, Schmitt gave an example of an aperiodic monotile in
E

3, later simplified by Conway and Danzer in 1993.

The SCD tile can only form sheets, that must be rotated as they
stack.

The tile does not form a tiling with a compact fundamental
domain. But it can form a tiling with an infinite cyclic action—
that is, a period.



In the plane, it happens that if a set of tiles admits a tiling with a
period, it admits a tiling with a finite fundamental domain.
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with a compact fundamental domain.
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general, then, we might distinguish:

A set of tiles is weakly aperiodic if it admits tilings, but no tiling
with a compact fundamental domain.

A set of tiles is strongly aperiodic if it admits tilings, but no tiling
with an infinite cyclic action.



In the plane, it happens that if a set of tiles admits a tiling with a
period, it admits a tiling with a finite fundamental domain.

The SCD illustrates that this is not the case in other settings. In
general, then, we might distinguish:

A set of tiles is weakly aperiodic if it admits tilings, but no tiling
with a compact fundamental domain.

A set of tiles is strongly aperiodic if it admits tilings, but no tiling
with an infinite cyclic action.

It is open whether there is a strongly aperiodic monotile in E
3.



Very recently, Socolar showed that the isohedral number is
unbounded for monotiles in E

3:

These tiles can only form hexagonal parquets, as shown, which
then stack to fill out space. The tile shown has isohedral
number 5, which of course generalizes.
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For monotiles in E
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(Schmitt 1988)

There is a
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unbounded

?

??
?

Both the SCD and Socolar’s constructions are quite elegant —
perhaps there are very simple examples that settle these
remaining questions?



3) Sets of tiles in H
2

In the hyperbolic plane, it is not difficult to find weakly aperiodic
tiles:



3) Sets of tiles in H
2

In the hyperbolic plane, it is not difficult to find weakly aperiodic
tiles: For example,

(GS 2001)Almost every triangle that does admit a tiling of H
2 is

weakly aperiodic!



Almost every triangle that does admit a tiling of H
2 is weakly

aperiodic!



However, weakly aperiodic sets of tiles seem too simple. In
(2005) the first strongly aperiodic set of tiles was found in the
hyperbolic plane (GS), modifying Kari’s construction in E

2.
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However, weakly aperiodic sets of tiles seem too simple. In
(2005) the first strongly aperiodic set of tiles was found in the
hyperbolic plane (GS), modifying Kari’s construction in E

2.
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These tiles admit only tilings with no symmetry whatsoever!



Thus, for sets of tiles in H
2, we would have:
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However just now, at this conference, we have two announced
proofs, by Kari and by Margenstern, that the Domino Problem is
undecidable in H

2!

There is a

weakly 

aperiodic 

set of tiles
(folk <1977)

There is a

strongly 

aperiodic 

set of tiles
(GS 2005)

The Domino

Problem is

undecidable
(Kari 2007

Margenstern 2007)

The Period

Problem is

undecidable

Isohedral 

number is 

unbounded 

Heesch

number is 

unbounded

??



You may keep the toys...

Other goodies available up front


