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In 1961, H. Wang noted connections between tiling problems
and certain questions in formal logic. He gave an easy proof
that the "Completion Problem" is undecidable, that is, that there
is no algorithm to decide whether a given set of tiles can form a
tiling of the plane containing a given configuration.



Wang constructed, for any Turing
machine, a set of tiles T so that a
certain “seed” configuration could
be completed to a tiling if and
only if the machine fails to halt.
Since the Halting Problem is un-
decidable, so too is the Comple-
tion Problem.
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Wang constructed, for any Turing
machine, a set of tiles T so that a
certain “seed” configuration could
be completed to a tiling if and
only if the machine fails to halt.
Since the Halting Problem is un-
decidable, so too is the Comple-
tion Problem.
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As an aside Wang remarks:



In other words (up to some minor conventions) Wang
conjectured that if a set of tiles admits a tiling at all, then it
admits a periodic tiling, and points out that if this is so, then the
“Domino Problem" is decidable, that there is a procedure to
decide whether a given set of tiles admits a tiling.



In other words (up to some minor conventions) Wang
conjectured that if a set of tiles admits a tiling at all, then it
admits a periodic tiling, and points out that if this is so, then the
“Domino Problem" is decidable, that there is a procedure to
decide whether a given set of tiles admits a tiling.

Conversely, then, if there is no such procedure, there must exist
aperiodic sets of tiles: tiles that admit tilings, but only
non-periodic ones.
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In 1964-66, Robert Berger in fact proved that the Domino
Problem is undecidable. That is, there is no general procedure
that can answer, for any given set of tiles, in finite time Yes or
No:

Does this set of tiles admit a tiling of the plane?

Hence, there must exist an aperiodic set of tiles.

Indeed, Berger not only gives such a set, but his proof of the
undecidability of the Domino Problem rests upon it.

This style of proof is the subject of my talk today.



Berger’s proof was highly complex; within a few years, R.
Robinson produced a greatly simplified exposition.



Berger’s proof was highly complex; within a few years, R.
Robinson produced a greatly simplified exposition.

Consider the following set of six tiles: Not only does the set
admit non-periodic tilings, it only does so and is thus aperiodic.



1) Every tile is either a         or incident to   

2) Can't have:  Only:

Hence:

3) So each         is part of:  

Hence, up to rotation,

every tile is in or next to:



4) These 3x3 blocks act like large        's

 & up to rotation,

every tile is in or next to

a 7x7 block:

 & up to rotation, every tile is in or next to a 15x15 block,  a 31x31 block, etc...

Consider a tiling by the Robinson tiles.  Any translation has a finite magnitude and

will translate some giant block onto itself. But this will not leave the tiling invariant.

Hence every tiling by the Robinson tiles is non-periodic and the tiles themselves

are aperiodic. 



Berger and Robinson make very strong use of the hierarchical
nature of an underlying aperiodic set of tiles; the basic idea is
to run Wang’s implemented Turing machines on larger and
larger domains in the hierarchy.)



The tiles Berger and Robinson design are to force the
appearance of arbitrarily large domains in any tiling they admit
(and in each domain, force the “seed" tile that begins the
emulation).

Their aperiodic sets of tiles force a hierarchical structure which
can be exploited to this end:
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In other settings

Implicitly we have been limiting the context of our discussion to
. . . , . . . tiles in the Euclidean plane. If we are careful to specify
the setting we can consider these questions in other contexts.

For example, ca. 1977, Penrose noted there are
aperiodic sets of tiles in the hyperbolic plane.
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In other settings

Implicitly we have been limiting the context of our discussion to
. . . , . . . tiles in the Euclidean plane. If we are careful to specify
the setting we can consider these questions in other contexts.

For example, ca. 1977, Penrose noted there are
weakly aperiodic sets of tiles in the hyperbolic plane.
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About this time, Robinson proved the Completion Problem is
undecidable in the hyperbolic plane :
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About this time, Robinson proved the Completion Problem is
undecidable in the hyperbolic plane :

H

He was not able to settle whether the Domino Problem is
undecidable in the hyperbolic plane and the question remained
open for nearly thirty years.



Theorem (Margenstern, Kari) The Domino Problem is
undecidable in the hyperbolic plane.

We have just seen something of Kari’s proof and are about to
learn more of Margenstern’s.



Theorem (Margenstern, Kari) The Domino Problem is
undecidable in the hyperbolic plane.

We have just seen something of Kari’s proof and are about to
learn more of Margenstern’s.

I will sketch here a simple “hierarchical" aperiodic set of tiles;
these can be used as the basis for a proof very much like
Berger’s, Robinson’s and Margenstern’s.



In essence, we adapt Robinson’s set of tiles to the hyperbolic
plane.

But how can there be a hierarchical structure to exploit, where
there are no self-similarities?



Margenstern begins with the {7,3} tiling



but this is already equivalent to



(Incidentally, this is quite a general principle, that in the
hyperbolic plane, tilings are naturally viewed as geometric
realizations of a kind of “regular production system", and that a
given system gives rise to many, non-quasi-isometric tilings
with the same combinatorial structure.)



A 3-fold horocyclic tiling:



A 3-fold horocyclic tiling, in an unusual model for clarity:



A 9-fold horocyclic tiling:



An 81-fold horocyclic tiling:



An 81-fold horocyclic tiling, zooming in
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horocyclic tiling, and indeed into a hierarchy of n2k

-fold
horocyclic tilings.
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Any n-fold horocyclic tiling can be recomposed into an n2-fold
horocyclic tiling, and indeed into a hierarchy of n2k

-fold
horocyclic tilings.

Lemma Any such hierarchy is strongly non-periodic– i.e.
admits no infinite cyclic symmetry.

(proof)

Corollary Any set of tiles that does admit tilings of H2, but only
tilings exhibiting this structure is strongly aperiodic.



Now having seen this brilliantly simple structure, those familiar
with the construction of matching rules will find the rest of this
talk predictable.



We have identified a non-periodic, hierarchical structure we
wish to force.
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We have identified a non-periodic, hierarchical structure we
wish to force.

We design a set of tiles to carry this out.

We inductively show that if they must form one level of the
hierarchy, they must form the next.

The tiles do admit tilings, and admit only tilings with this
structure.

Once we have this underlying strongly aperiodic set of tiles,
then the rest of the Berger-Robinson-Margenstern proof is
relatively standardized.



Five basic tiles:
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Inductively define “blocks"

Ak Bk Ck

Dk E



We aim to define markings that delineate a “nerve" in each Bk :

Bk



A hierarchy of nerves:



A schematic of the markings:



85 tiles:
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85 tiles:

A
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D0

E

E
A, C or E

(fewer if we allow non-standard rules—such as “tip to tip")



A “well-formed marked k-level block Bk "



The Proof: Assume every tile B lies in a unique k-level
well-formed block, and these blocks are arranged in an ∗-fold
horocyclic tiling. We show this is so for k + 1.



The Proof: Assume every tile B lies in a unique k-level
well-formed block, and these blocks are arranged in an ∗-fold
horocyclic tiling. We show this is so for k + 1.











These well-formed blocks cannot overlap



These well-formed blocks cannot overlap

and can only lie in neat rows, the ends of each block directly
above the ends of others.



These well-formed blocks cannot overlap

and can only lie in neat rows, the ends of each block directly
above the ends of others.

QED: This set of 85 tiles is strongly aperiodic, forming only
“hierarchical" tilings in the hyperbolic plane.


