
How to Create Problems

(in Tiling)

In any given fixed setting, say polygonal tiles in the
hyperbolic plane, we can ask a variety of questions,
such as:

“Is there an aperiodic set of tiles?”

In this talk, we’ll look at an interlocked web of such
questions and discuss a variety of conjectures and
results, both old and new.



In general, a particular setting is given by

• a metric space X,
• a group of isometries G acting on X to move tiles
about,
• and a description R of allowed tiles, local matching
rules, etc.

A setting is “nice” if we can enumerate, for each
finite set of tiles (each protoset), all finite configu-
rations.

In this talk we’ll focus mostly on these two nice
settings:

H
2, tiled by polygonal tiles meeting vertex-to-vertex.

En, tiled by copies of a single tile.

But the questions we ask can be considered in any
setting, and the connections between the questions
hold in any nice setting.



The Completion and Domino Problems

In a fixed, specific setting (X,G, R), we can ask the
following:

Question 1. Is there an algorithm that decides,
given a set of tiles T and a starting configuration
C, whether C can be extended into a tiling by C?
That is, is the “Completion Problem” decidable?

Question 2. Is there an algorithm that, upon being
given a set of prototiles T decides whether or not
there is a tiling by T? That is, is the “Domino
Problem” decidable?

In 1961 Wang showed that the Completion Prob-
lem, for square tiles with colored edges moved by
translations only, in E2 (“Wang tiles”), is undecid-
able by constructing, for any Turing machine, a set
of tiles T so that a certain “seed” configuration
could be completed to a tiling in Σ(T) if and only if
the machine fails to halt. Since the Halting Problem
is undecidable, so too is the Completion Problem.



Wang asked Question 2, and conjectured the an-
swer was positive. In particular, he could not see
how one could construct a set of tiles so that the
use of the seed configuration he required could be
guaranteed (note that the Domino problem is de-
cidable for the tiles in the above construction).

In 1964, Berger proved that the Domino Problem
was in fact undecidable for Wang tiles in E2. In
particular, then, Berger was able to construct, for
any given Turing machine, a set T of tiles such that
Σ(T) 6= ∅ if and only if the corresponding machine
fails to halt. He did this by first building a “hi-
erarchical framework”— a hierarchy of larger and
larger domains forced to appear by the structure of
the tiles in the protoset — on which to hang Wang’s
construction.

By and large, if we regard other classes of proto-
sets in E2 or in higher dimensonal Euclidean spaces,
these results can be extended.

However, the answer to either of these questions
is unknown if we ask that T contain only a single
prototile. This conjecture has surely occured to
many people:

Conjecture In the Euclidean plane, among polygo-
nal monohedral tilings, the Completion problem and
the Domino problem are decidable.

This conjecture remains open even for “polyominoes”—
tiles assembled from squares.



But we apply:

Conway’s Presumption: If a lot can happen, ev-
erything will happen.

In other words, in a given combinatorial setting, if
there is enough complexity that all kinds of mys-
terious things occur, unless you have a really good
reason to thing otherwise, its best to bet that the
setting can emulate computation, and so gives rise
to undecidable questions.

Already with monohedral tilings, all kinds of mys-
terious examples have been found, that support an
application of Conway’s conjecture.

For example, is it possible to tile the plane with
copies of this tile?

Naively trying things out, one finds it is possible to
tile a pretty large region, but then, mysteriously, no
more. Examples like this abound. Applying Con-
way’s Presumption, we have a counter-conjecture:

Conjecture In the Euclidean plane, among polygo-
nal monohedral tilings, the Completion problem and
the Domino problem are not decidable.

As we get to other related questions, we’ll see more
support of the use of Conway’s Presumption.



Let P be a set of tiles, in some setting X. One of
three things is true:

•There is no tiling of X by copies of the tiles in P .

•There is a periodic tiling (a tiling with a co-compact
symmetry) of X by copies of the tiles in P .

•There is a tiling by copies of the tiles in P , but
there is no periodic tiling.

We’ll look at each of these cases in turn and see
how the relate to our questions.



Heesch Number

Suppose P is a set of tiles that cannot tile X. Up
to certain “niceness” conditions on our setting, this
implies that there is a maximum size disk which can
be tiled by P . We can measure the size of this disk
by counting the maximum number of coronas that
one can form. This is the Heesch Number H(P ) of
P . For example,

H( ) = 2

Let f be any function f : {P} → N (for example, f

may just give the number of tiles in the prototset,
or might enumerate the possible protosets).

Let H(n) := maxP∈f−1(n) H(P )
(H(4), for example, might be the highest possible
Heesch number among sets of 4 tiles)

Then if the domino problem is undecidable in X,
there is no computable function that bounds H(n).



If the domino problem is undecidable in X, there is
no computable function that bounds H(n)!

In particular, for example, there is no computable
bounding function on the Heesch number for Wang
tiles. This is truly incredible if one recalls that there
are computable functions such as

g(1) := 1, g(n) := n ! . . .!
︸︷︷︸

g(n−1)

Question 3. In a given “nice” setting X, is there
a computable bounding function on H(n)?

For monotiles, all this is a classical question posed
by Heesch:

Question 4. (Heesch) In the Euclidean plane, are
there monotiles with arbitrarily high Heesch num-
ber?

At the moment, an infinite family of monotiles with
Heesch number 5 is known (Mann, 2000), but Heesch’s
question remains completely open. Many of the ex-
amples that are known are quite mysterious, and so
applying Conway’s presumption, we have

Conjecture Yes



Isohedral Number

Turning to the second case, we again see classical
questions are tied to the Domino Problem.

Suppose P is a set of tiles, in a “nice” setting X,
that admits a tiling with a co-compact symmetry.
In such a tiling, the tiles lie in various orbits under
the symmetry.

The isohedral number I(P ) is the smallest number
of orbits possible in a tiling by P . This remarkable
example is the current (Sept 2004) record holder,
with isohedral number 10 (!)



Again, for any f : {P} → N let I(n) := maxP∈f−1(n) I(P )
(I(4), for example, might be the highest possible
isohedral number among sets of 4 tiles)

We ask

Question 5. In a given “nice” setting X, is there
a computable bounding function on I(n)?

For monotiles, again this is a classical question:

Question 6. In the Euclidean plane, are there
monotiles with arbitrarily high isohedral number?

Very little is known; I believe, but am not sure,
that examples with isohedral number 6 are the worst
known. Again, Conway’s Presumption leads us to:

Conjecture Yes

The isohedral number is related to the Period Prob-
lem:

Question 7. In a given nice setting X, is there
an algorithm to decide whether a given set of tiles
admits a periodic tiling?

This remains open for monotiles in the plane; very
recently, K. Keating and A. Vince gave a polynomial
time algorithm to decide whether a given polyomino
has isohedral number 1, but this sheds little light on
the general problem.

If the period problem is undecidable, then there is no
computable bound on I(n), and the Domino Prob-
lem is undecidable as well.



We now turn to our final case: Suppose P admits
tilings but no tilings with co-compact symmetry.
Well, the obvious question is:

Question 8. In a given setting X, can such a P

exist?

(Wang) If the domino problem is undecidable, then
there is such a P .

In fact, Wang originally conjectured that no such
set P could exist in the Euclidean plane. In 1966,
R. Berger constructed such a set in the course of
proving that the Domino Problem is undecidable in
that setting. These “aperiodic” sets have been a
rich source of problems. . .

For monotiles we have:

Question 9. Is there a monotile that admits a
tiling of the plane, but admits no tiling with co-
compact symmetry?

Again Conway’s presumption leads us to

Conjecture Yes! but to be honest, I don’t believe
it!



In summary, so far, we have the following implica-
tions in a nice setting X.

The Period 

Problem is 

undecidable

The Domino 

Problem is 

undecidable.

The Completion 

Problem is 

undecidable
⇒
 ⇒


⇒



⇒



There is a set P that 

tiles but never co-

compactly.

⇒

There is no com-

putable bound on 

isohedral no.

There is no com-

putable bound on 

Heesch number.

For monotiles in the plane, my brain says the an-
swers should be Yes but, frankly, my heart says none
of these should hold!



Incidentally, I’d like to briefly discuss a couple of
near misses in the search for a monotile that tiles
but not co-compactly.

First, in E3, there is an example of a single tile that
admits a tiling, but not with co-compact symme-
try. I’ll discuss this example in more detail in just a
moment.

Second, there are several examples of a sets of just
two tiles that admit tilings, but not co-compactly;
the Penrose tiles are the most famous examples.
Moreover there are examples in which the area of
one tile can be made arbitrarily small.



Third, one has to be very careful with the defini-
tion of the setting we’re discussing. Many times,
authors have looked at examples with various kinds
of “matching rules”; for this problem we must be
allowing something pretty restrictive. We certainly
can’t be allowing tiles with “atlas” style matching
rules, because of the following, extremely stupid ex-
ample:

There is a set of atlas style rules that allow a 2:1
rectangle can tile but not co-compactly.

start with a set of wang-tiles


with the desired property. Use


these to construct an atlas for


2:1 rectangles



Finally, if we allow similarities, we get some fasci-
nating examples with the desired property:



Tilings in the hyperbolic plane

I’d like to now turn to the hyperbolic plane, where
some more general issues come into play.

In 1977, R.M. Robinson showed that the Comple-
tion Problem is undecidable in H2. Essentially he
modeled Wang’s original result on square tiles within
a tiling of H2.

But the decidability of the Domino Problem remains
open in the hyperbolic plane. Applying Conway’s
Presumption we have

Conjecture In H2, among polygonal protosets, the
Domino problem is undecidable



Incidentally, the Domino Problem is not decidable in
Hn, n > 2, by a simple trick: one can foliate Hn into
parallel horospherical, (n−1)-dimensional Euclidean
layers. For any given set T of tiles in En−1, it is
trivial to construct a set of tiles in Hn that, within
such horospherical sheets, mimic the behavior of the
tiles in T . As the Domino Problem is undecidable
in En≥2 it is undecidable in Hn≥3

Similarly, one can ask about bounds on isohedral
number, Heesch number, and whether the Period
Problem is decidable. But I’d like to focus on:

Does there exist a set of tiles that does admit a
tiling but not with a co-compact symmetry?

In Hn, the answer is yes!



However, there is something quite unsatisfying about
this example. It does in fact admit a tiling that is
invarient under some isometry.

In E3, here is an example of a single tile that can
admit a tiling but without a co-compact symmetry.
Again though it does admit a tiling with a period.
Does this tile deserve to be considered “aperiodic”



I’ve deliberately avoided the use of the word “aperi-
odic” because I wanted to make a finer distinction.
This subtlety was not noticed for a long time be-
cause for tiles in the Euclidean plane, the following
two definitions coincide:

A set P is weakly aperiodic if it admits a tiling, but
no tiling with co-compact symmetry. The previous
two examples are weakly aperiodic.

A set P is strongly aperiodic if it admits a tiling,
but no tiling invarient under an infinite cyclic sym-
metry (a period!)

As we’ve seen, weak aperiodicity is logically linked
to the Domino Problem. But somehow, strong ape-
riodicity fits more with one’s sense of just what the
word “aperiodicity” should mean— no periods!

And so we ask, in a given nice setting:

Question 10. Is there a strongly aperiodic proto-
set?

In particular, this remained open in the hyperbolic
plane. I personally was positive no such set could
exist, and I tried very hard to prove this. But even-
tually I realized why I couldn’t succeed:

Theorem 11. There is a strongly aperiodic pro-
toset in the hyperbolic plane



The Period 

Problem is 

undecidable

The Domino 

Problem is 

undecidable.

The Completion 

Problem is 

undecidable
⇒
 ⇒


⇒



⇒



There is a weakly 

aperiodic protoset.

There is a strongly 

aperiodic protoset ⇒


⇒

There is no com-

putable bound on 

isohedral no.

There is no com-

putable bound on 

Heesch number.


