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Aperiodic tiling — a form of complex global geometric 
structure arising through locally checkable, constant-time 
matching rules — has long been closely tied to a wide 
range of physical, information-theoretic, and foundational 
applications, but its study and use has been hindered by a lack 
of easily generated examples. Through readily generalized, 
robust techniques for controlling hierarchical structure, we 
increase the catalogue of explicit constructions of aperiodic 
sets of tiles hundreds-fold, in lots, easily assembled and 
configured from atomic subsets of 211 tiles, enforcing 25,380 
distinct “domino” substitution tiling systems.

© 2018 Elsevier Inc. All rights reserved.

0. Introduction

An aperiodic set of tiles is one that may be used to tile the plane, but only non-
periodically — a form of complex global geometric structure arising through locally 
checkable, constant-time matching rules.

The very existence of aperiodic sets of tiles is implied by the undecidability of the 
“domino” (or “tiling”) problem, that no algorithm can ever decide whether any given set 
of tiles can be used to form a tiling of the plane. Hao Wang opened this discussion in 
1961 [17], in the context of his work on one of the then-remaining open cases of Hilbert’s 
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Fig. 1. Four configurations of domino tiles, and suggestive notation for referring to them.

Entscheidungsproblem (“Is a given first order logical formula satisfiable?”). Wang conjec-
tured that the domino problem is decidable, citing the self-evident implausibility of any 
existence of aperiodic sets of tiles! Fortuitously, Wang was incorrect and Robert Berger 
soon showed the domino problem undecidable [1], producing the first aperiodic set as a 
tool in his proof. Since this initial construction, about forty more aperiodic sets of tiles 
have been explicitly described, most found by mysterious art. These aperiodic sets of tiles 
have long been closely tied to a wide range of physical, information-theoretic, dynamical 
and foundational applications, in a range of geometric and combinatorial settings — 
see [5] for background, supporting and bibliographic material. However the study and 
use of aperiodicity through local rules has been hindered by a lack of easily generated 
examples.

Through readily generalized, robust techniques for controlling hierarchical structure, 
we increase the catalogue of explicit constructions of aperiodic sets of tiles hundreds-fold, 
in lots, easily assembled and configured from smaller atomic subsets, industrializing their 
production and flexibly enforcing a range of hierarchical, substitution tiling needs at 
reasonable cost, an example of control one might routinely expect. Such constructions 
may serve as scaffold for further applications and stimulate further development of the 
theory of matching rule tiling spaces.

Enforcing domino substitution tilings We follow the long thread from [1] onwards, con-
structing aperiodic sets of tiles that only admit hierarchical, and hence non-periodic, 
tilings (Fig. 2), in our case on domino tiles, 2 × 1 rectangles

Our aperiodic sets “enforce” “substitution rules”, as in Fig. 2; we define these terms 
precisely in Section 1. Even the simplest non-trivial substitution rules on the domino 
are unexpectedly rich: of the four configurations, in Fig. 1 (together with the symbols 
we’ll use to name them) only three of them are enough to specify well-defined tiling 
substitution rules and hence tilings (see Fig. 3). Each of the first three rules can be 
iterated in only one way. (The dynamics of the (or “table”) tiling substitution system, 
at left of Fig. 1, and of the L- (or “chair”) substitution of Fig. 2 were studied in [13].)

However the fourth rule is not yet well-defined: The domino tile itself has more sym-
metry than the fourth configuration, and so there is an ambiguity when we try to iterate, 
and this is more so when we try a second time. In order to give a well-defined rule we 
must give the specific motions that we are allowed to use to place each child supertile 
into its parent, so that we know which end is which as we iterate the rule. We address 
this by framing each supertile, with the markings of Section 4.1.

By specifying which “pieces” — specified by “atomic symbols” — of substitution rules 
we will allow (Fig. 3), in other words, in which orientations we will allow children to be 
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Fig. 2. Enforcing substitution tilings with an aperiodic set of tiles: (Left) Non-periodic hierarchical tiling by 
“L-supertiles” defined by a tiling substitution rule (Section 1); however L-tiles admit many other tilings 
as well. At right, two tiles, the trilobite and crab [4], that enforce these hierarchical tilings: Each tiling 
by these two tiles must be a marked up hierarchical L-tiling. These two tiles do admit tilings (namely 
the marked up L-tilings) but only non-periodic ones (namely the marked up L-tilings and nothing else). 
Consequently the pair is an aperiodic set of tiles. We industrialize the production of such objects.

Fig. 3. (Left) The “table” -tiling substitution [13], and a level 5 supertile, with tiles marked by orien-
tation. (Right) In order to apply a well-defined “domino” tiling substitution rule, we must specify the 
isometries that place each tile into the supertile and child supertiles into parent ones — which way round 
is the placement of the tile? In the notation introduced in Section 4.2, the tiling substitution rule shown 
at right above has code 1101.

placed relative to their parents, we obtain a large number of distinct substitution tiling 
systems and their corresponding tiling spaces as (well-)defined from [8] onwards.

To each of these atomic symbols, we assign an “atomic set of tiles”. We show that 
any union of atomic sets of tiles enforces the substitution rule that is described by the 
corresponding atomic symbols.

Organization of the paper Much supporting, motivational, foundational and biblio-
graphic material has been relegated to [5]. We define our terms in Section 1 and our 
markings in Section 2.

In Section 3 we construct a set of 4+23 tiles, T1 (Fig. 8). Our atomic sets of tiles in 
T1 correspond to the three rules at left of Fig. 1, individually, and all of the -rules, 
together, at right. As expressed in Theorem 1, there are nine aperiodic subsets of T1, 
unions of these atomic sets, enforcing the domino tiling substitution rules of Fig. 1, 
together or individually, taking all the tiling substitution rules as a group. The latter 
half of this section is somewhat ad hoc and may be easily passed over, though it does 
provide an example of a general technique used to work out atomic sets of tiles.

In Section 4 we use a particular subset, denoted T , as the basis for a more refined set 
of 16+195 tiles, T2. Our atomic sets of tiles in T2 correspond to the manner in which each 
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child domino may be placed into a parent rule as suggested in Fig. 17. As made precise 
in Theorem 2, we may combine atomic subsets of T2 to enforce the tiling substitution 
rules, together or individually. These atomic subsets exactly correspond to pieces of the 
structure of the rules themselves.

In Section 5 we carefully count out 25,380 distinct matching rule tiling systems taking 
into account symmetries of the corresponding substitution systems.1 Of these, 128 are 
deterministic, with minimal substitution tiling spaces; the rest are composed from these 
minimal systems.

In order to verify, or not, that the corresponding tiling spaces are topologically distinct, 
we hope for the development of industrial strength computation of tiling space invariants, 
and a suitable theory of non-deterministically hierarchical matching rule tiling spaces.

In Section 6 we describe pairs of tiling substitutions that act upon a single tiling space. 
The corresponding tiling spaces are non-periodic yet have non-unique decomposition — 
each of these is a pair of distinct substitution rules that both act on the same tiling space 
(the action being in the sense of [8]). In this sense, these examples are not counter to 
the result of [16].

Acknowledgments

The sets of tiles T and T1 were jointly discovered with Thomas Fernique, at his 
suggestion to enforce the table, tiling substitution rule, while hosting me at Paris 
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collaboration and generosity, and to the hospitality of Le Laboratoire d’Informatique de 
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1. Definitions

We discuss foundational material more fully in [5]. Here let I be the set of Euclidean 
isometries, acting on E2 and let A+ be the set of distance expanding affine transforma-
tions of E2. Though we will illustrate and describe our tiles using colored markings, and 
the notion of local matching rules generalizes considerably, formally a tile t is simply 
an unadorned, closed disk in E2. Our matching rules are enforced by restricting our 
definition of configuration to those sets C of tiles with disjoint interiors.

1 Consider the ratio of the “size of a set of tiles” (specifying our geometric setting, definition of local rules, 
measure of complexity, etc.) to the “number of distinct tiling spaces we may enforce” with subsets. Berger’s 
initial construction, famously, had a ratio of more than 20,000 (tiles to 1 tiling space). Robinson’s tiles 
have a ratio of 6. Our set T1 has a respectable ratio of 3 (27 tiles to 9 tiling spaces), and there are many 
examples with a ratio of 2. The well-known “Einstein Problem” — Is there an aperiodic monotile? — asks 
for a ratio of 1 (and any solution tightly depends on specifying our setting and definition of complexity). 
For what it’s worth, our second master set of tiles, T2 presents a substantial improvement in this metric 
(and in [5] we give an example of 84 tiles enforcing half a billion substitution systems!). It may be easy to 
settle: Must this ratio have infimum 0?
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The support �C� of a configuration C is the union of the tiles, as point sets, within 
it, that is, �C� := ∪t∈Ct. A tiling is a configuration with support E2.

In E2, a tiling C is periodic if there exists some translation v such that C = C + v; 
that is, for each tile t ∈ C, the tile t + v is also in C.

A configuration C is admitted by a set T of tiles if and only if each tile in C is 
congruent to some tile in T (that is, C = {giti} where each gi ∈ I and each ti ∈ T ). Let 
C(T ) be all configurations admitted by T and let Σ(T ) ⊂ C(T ) be all tilings admitted 
by T .

A set of tiles is aperiodic if and only if it does admit a tiling, but does not admit 
any periodic tiling. In the Euclidean plane, this is satisfactory [7], but in general we 
must distinguish between weakly aperiodic sets of tiles, that admit only tilings with no 
compact fundamental domain (no co-compact symmetry) and somehow seem “for free” 
and more subtle strongly aperiodic sets of tiles, which destroy all infinite cyclic action 
(or all action).

We narrowly define a tiling substitution rule on a tile t in a set T of tiles with “inflation 
factor” s ∈ A+, to be a configuration σ(t) ∈ C(T ) such that �σ(t)� = st; given a tiling 
substitution rule σ on t, for any g ∈ I, we define σ(gt) := sgs−1σ(t).

A finite set S = {σi} of tiling substitution rules σi on tiles in some set T of tiles, 
at least one for each tile in T , defines a tiling substitution system (T , S) (which is 
“deterministic” if there is exactly one rule per tile). We inductively define supertiles
produced by S:

• Each {t}, t ∈ T , is a 0-level supertile.
• If C is an n-level supertile, then each gC, g ∈ I, is an n-level supertile.
• If C is an n-level supertile, then 

⋃
gt∈C

σ(gt), each σ ∈ S, is an (n + 1)-level supertile.

Generally, for combinatorial substitution rules, we must take as axiomatic that some-
how, each higher-level supertile is a well-defined configuration. Indeed, it remains an 
open question whether or not it is decidable if a given finite combinatorial substitution 
system is geometrically realizable! But here, because we assume that each �σ(t)� = st

for a common s ∈ A+, by induction each supertile is in fact a well-defined configuration.
Note that as a configuration admitted by T , σ(t) has tiles of the form giti, gi ∈ I, 

ti ∈ T . Though often overlooked, in order to iterate substitution rules, we must specify 
these gi, at least up to the symmetry of the supertiles (of all levels). In this paper, we 
will be concerned with the substitution rules defined by the configurations in Fig. 1; the 
first three configurations have the same symmetry as the domino, and in order to define 
the , and substitution rules, the specific isometries used to place a given domino 
need only be specified up to such a symmetry. However, every higher level supertile 
has trivial symmetry, and in order to be able to well-defined iterate a substitution 
rule, we must give the actual isometries used to place each domino.
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We take various sets of these rules to define non-deterministic substitution rules, such 
as { , }, or various collections of the deterministic rules.

The substitution tilings defined by a given tiling substitution system (T , S) are those 
tilings C ∈ Σ(T ) such that for each finite subset C1 ⊂ C, there exists some supertile 
C2 and an isometry g such so that gC1 ⊂ C2. The hierarchical tilings defined by (T , S)
are the tilings C ∈ Σ(T ) such that for each t ∈ C, there exists a sequence t = C0 ⊂
. . . ⊂ Cn ⊂ . . . ⊂ C, each Cn an n-th level supertile. It is not difficult to show that (a) 
every substitution tiling is a hierarchical tiling and (b) under any translation invariant 
probability measure, almost every hierarchical tiling is a substitution tiling.

(Almost every such hierarchy of supertiles covers the entire plane, though still un-
countably many will cover only a portion of the plane. A substitution tiling system 
“forces the border” [15] if and only if the substitution tilings made of up of more than 
one infinite hierarchy (each partially covering the plane) are each determined by any one 
of these hierarchies.)

Otherwise, as in [12] onwards, in a hierarchical tiling, there may be an “infinite fault 
line” between these hierarchies, with no coordination across the fault. However, in any 
tiling space, as defined in [11], the subset of tilings with infinite faultlines can only be of 
measure zero, and so is often disregarded.)

(Non-deterministic substitution tilings, such as those we consider here, do give well-
defined tiling spaces, in precisely the sense of [11] onwards, but these are not minimal. 
A foundation for the study of such spaces appears in [14], and much further development 
may be hoped for.)

Matching rules enforcing hierarchical tiling Many different definitions of “enforcing” a 
tiling substitution system appear in the literature,2 but all of them imply an almost-
everywhere well-defined, onto, locally-checkable map from a matching rule tiling space 
to a substitution tiling space, or equivalently, up to measure one, a hierarchical tiling 
space.

Our definition here is aligned with the specific structure of our inductive proof of 
enforcement, following [1] onwards and will satisfy whatever reasonable demands we 
make of it.

Given sets of tiles T ′, T a local map, or local derivation Φ : Σ(T ′) → Σ(T ) is defined by 
specifying a finite set of distinct finite configurations {Ci} ⊂ C(T ′) and a corresponding 
set of finite configurations {Φ(Ci)} ⊂ C(T ), satisfying:

2 Other well-established, equivalent-up-to-measure-one, definitions of “enforcing tiling substitution sys-
tem” include: requiring Φ to be a bijection from all but a measure zero subset of Σ(T ′) (measured in any 
translation invariant Borel probabability measure) to the substitution tilings of (T , S) (cf. [10]). Or we may 
define preimages of supertiles, and require that almost every tile in every tiling in Σ(T ′) lies in a unique 
hierarchy of such preimages (cf. [3], [2]). Or we may require that the tiles in T ′ are decorated versions of 
the tiles in T and the map Φ that simply removes the decorations is a bijection from Σ(T ′) to the set 
of substitution tilings. We do not discuss the meaning of these variations here, and our construction is 
transparent to them.
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Fig. 4. At left, cornered and uncornered tiles, following Robinson [12]. The tiles in any tiling by these lie 
on a square lattice; each vertex of the lattice meets one cornered tile and three uncornered tiles, and each 
cornered tile must be in at least a row or a column of cornered tiles. As at the right end of the illustration, 
the “trilobite” tile has richer behavior and, as in [4], may allow a more efficient and subtle structures.

• Each tiling τ ∈ Σ(T ′) is the union of configurations of the form gC, g ∈ I, C ∈ {Ci}.
• Φ(τ) :=

⋃
gC⊂T

gΦ(C) is a tiling in Σ(T ).

We say that a set T ′ of tiles enforces a substitution system (T , S) if and only if there 
is a well-defined local map Φ : Σ(T ′) → Σ(T ) such that each Φ(τ) is a hierarchical tiling 
under (T , S).

(In fact, we can strengthen our definition of enforcement, and require that each Φ(τ)
is a substitution tiling – that is we can avoid “slipping along infinite fault lines” — 
by adding a sidedness to our marking +, - below, as our other markings have, with an 
increase in the size of our tilesets. We touch on this and other variations in [5].)

2. The underlying markings and tiles

We define our matching rules, as above, geometrically: our tiles are unadorned closed 
topological disks and we require that these have disjoint interiors in any well-formed 
configuration. We will describe and enumerate our matching rules and tilings, encoded 
as below, as various strings on edges, and we will illustrate them with colors, as in Fig. 6. 
We may adopt other formalisms if we wish instead, as for example Wang tiles in [12].

Our basic construction is, as will be easily recognized, derived from the Robinson 
tiles [12], and as there, our tiles are modified squares, of two basic kinds: “cornered” and 
“uncornered” which may only fit together as in Fig. 4.

Our markings are all “directed”, pointing in or out, and some are “sided”, balanced 
right or left, captured in the notation below. A tile is defined, up to congruence, by 
specifying whether it is cornered or uncornered, and its four edge markings, up to cyclic 
ordering, or reversing the ordering and reflecting the markings. We always presume our 
tiles are denoted in the (ad hoc as useful) normal forms we develop for referring to them.

As indicated in Fig. 5, we will be working with “outward” tiles (which may be cornered 
or uncornered), with all four markings “directed outward”, and uncornered “crossing” 
tiles, with three markings “inward”, and one outward marking matching the opposite 
inward one, as described below.

The markings themselves are illustrated in Fig. 6 and the basic structure they enforce 
in Fig. 7.
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Fig. 5. Outward and crossing tiles.

Fig. 6. Our basic edge markings, (abcd) have four channels, illustrated here. The markings in the (ab)
channel precisely encode the Robinson tile markings [12]. Tiles may meet along an edge if and only if 
the (ab) channels sum to 00 and the (cd) channels are equivalent. Reflecting a tile takes (b) to (-b). The 
special markings (±000) are denoted simply (+), (-). Z2 ⊕ Z2 acts upon the d-channel by nim-addition 
(§4.1), just as it acts upon the symmetries of the domino. Though we illustrate our constructions with 
colored markings, and define them as combinatorial notations, we can encode these as simple topological 
rules, our tiles being unmarked closed topological disks, with combinatorics encoded within the geometry, 
as at right. More generally, as discussed in [5], we may refine and adjust our markings, for different ends, 
with varying control of our tiling spaces. (Specifying the sidedness of (000), for example, we can coordinate 
infinite supertiles across “infinite fault lines”, but with a correspondingly greater number of tiles.)

Fig. 7. The tiles in T1 will be based on those at top left and right, with the remaining markings given in 
Fig. 9. As shown at middle left, upon each crossing tile with horizontal (c) channel markings 0, 1 or 2, the 
vertical marking must be “up”, i.e. (a) channel marking + on top of the tile and - on bottom. On those 
marked 3, the vertical markings may be up or down. (The active reader is encouraged to write this notation 
on the figure, to facilitate further calculations throughout.) Consequently, in any tiling by tiles with at least 
these markings, the cornered tiles must each lie within the 3 × 7 “domino block” shown at middle top, as 
we show below: (i) If cornered tiles are placed as at lower left, no tile may be placed at the location marked 
X. (ii) Consequently, copies of the tile at upper left must occur in pairs. (iii) Similarly, no configuration 
includes the tile shown and a tile at X. (iv) Thus, each cornered tile lies within a quadruple, well-defining 
some domino block. In Section 3.3, in the interior of each domino, we will place the uncornered outward 
tiles shown at right, controlling their possible placements as “atomic sets” of allowed “key tiles”, where 
signed crossings meet. In Section 4 we gain finer control through the use of our d-channel markings.
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Encoding the markings symbolically Our edge markings are of the form

m = (abcd)m ∈ {+, -} × {0, +, -} × {0, 1, 2, 3} × {0, 1, 2, 3}

(d will be suppressed in T1).
Edge markings m, m′ may be fitted together (that is, “match”) if and only if (ab)m =

-(ab)m′ , and (cd)m = (cd)m′ (so for example, (+-31) and (-+31) match). A marking m′ is 
a “reflection” of a marking m if and only if (b)m = (−b)m′ , and (a, cd)m = (a, cd)m′ (so for 
example, (+-31) and (++31) are reflections of one another).

In the illustrations of markings, described in Fig. 6, we encode these properties as 
geometry. With no ambiguity in the markings we will use, we may abbreviate (+000)
and (-000) as (+) and (-), and if d is unneeded (as in the first set of tiles), we suppress 
it, writing (+-3) for (+-30).

We naturally refer to the (a, b, c or d) channel of a marking m, meaning (a)m, (b)m, 
etc. The (a) channel is the “direction” of a marking, the (b) channel is its sidedness. 
The (c) channel is used to encode the structure of Σ(T1). The d-channel further encodes 
Σ(T2), which factors to Σ(T ) by suppressing d.

The Z2⊕Z2 symmetry of the domino naturally operates on symbols in the d-channel, 
by “nim-addition”, in which bits are added independently mod 2 as described further in 
Section 4.1.

3. Nine aperiodic subsets of twenty seven tiles

Our goal in this section is to define the terms of the following theorem, and provide 
its proof:

Theorem 1. The set of tiles
T enforces the tiling substitution system;
T enforces the tiling substitution system;
T enforces the tiling substitution system;
T enforces the { , , } tiling substitution system;

T ∪ T enforces the { , } tiling substitution system;
T ∪ T enforces the { , } tiling substitution system;
T ∪ T enforces the { , , } tiling substitution system;

T ∪ T ∪ T enforces the { , , } tiling substitution system; and
T1 enforces the { , , , } tiling substitution system.

Each of these sets of tiles is aperiodic.
We further observe that for each of the above sets, its union with U1 enforces just 

exactly what the set itself does on its own. No proper subset of T , T or T admits a 
tiling.

In Section 3.1 we outline the structure of the proof, which is essentially the same as 
that of every aperiodic hierarchical tiling from [1] onwards.
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In Section 3.2 we formally define a set of 27 tiles T1, for which various subsets enforce 
domino substitution tiling systems as claimed in Theorem 1.

In Section 3.3, we give the underlying combinatorial structure. In essence, our tiles 
must lie in well-formed marked supertiles, and we can control which ones by what cross-
ings we allow, in the form of “key tiles”, where the signed markings of a marked supertile 
meets those of its parent and grandparent (see Fig. 8 and Fig. 15).

Only then do we work out what we need to include and exclude from our tile sets 
T (16 tiles), T (17 tiles), T (18) and T (26). The details are tedious and ad hoc, but 
this serves as an example of iterating substitutions on marked supertiles, a useful and 
general technique for working out such sets. In Section 3.5 we further check how these 
sets are related to one another, completing the definition of the terms of Theorem 1
and the details of its proof. Once accepting that T , particularly, behaves as stated, one 
may safely skip forward to Section 4, and its Theorem 2 which has a more systematic 
proof.

3.1. Outline of the proof of Theorem 1

Our strategy is fairly standard, similar to each construction of matching rules enforcing 
hierarchical tilings from [1] onwards. Here and more so in the proof of Theorem 2, we 
industrialize our arguments, handling many standardized cases at once.

As usual in constructing aperiodic sets of tiles enforcing hierarchical structure, we 
show that each set of tiles enforces some specified tiling substitution system, each tile 
in each tiling lying in a well-defined, unique hierarchy of larger and larger “marked 
supertiles”, configurations mapped under a natural local decomposition to supertiles 
in the tiling substitution system (by simply erasing the markings and adjusting the 
boundaries).3 Consequently, the set of tiles actually admits a tiling at all (because it 
admits configurations covering arbitrarily large disks — this standard argument appears 
as The Extension Theorem, Theorem 3.8.1 in [7] and is often cited as “by compact-
ness” or “by Koenig’s Lemma”). Furthermore, because in any tiling by these tiles 
each tile lies in a unique marked supertile of each size, any such tiling must be ape-
riodic.

We accomplish this by showing inductively, that every tiling by k-level marked super-
tiles is also a tiling by (k + 1)-level marked supertiles.

As in Fig. 8, we may restrict or allow which supertiles may be formed in the hierarchy 
by excluding or including particular tiles. In Section 3.4, in order to verify which tiles are 
actually needed, we let substitution act on the marked tiles and supertiles themselves, 
enumerating tiles as we go along.

3 As in [8], this extends naturally to a surjection from our matching rule tiling spaces onto the hierarchical 
ones, which contain substitution tilings as a subset of measure one. This map is one-to-one, except on a 
measure zero set, the hierarchical tilings with “infinite fault lines”.
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Fig. 8. At left top we show the tiles of T1, boxing its “key tiles” where signed markings meet. Four of its 
aperiodic subsets, enforcing different domino tiling substitution systems are indicated below. We control 
which substitutions are allowed simply by which tiles we include or not. For example, the marked tile 
in the table at top left, is needed to form supertiles, as at top right and bottom right (in particular it 
is required for a U block to be within a parent I block). Without the marked tile we can enforce at most 
{ , , }. (Top right) A marked supertile admitted by the 16 tiles of T . (Middle right) A marked 
supertile admitted by the 17 tiles in T . The marked tiles are the same, both lying at the center of an H

within an I. (Bottom right) A { , , , } supertile in the 27 tiles of T1.
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Fig. 9. We explicitly define the markings on our first set T1 of twenty-seven tiles, all with d suppressed. 
There are four outward tiles T+, shown at upper left, and twenty-three crossing tiles Thv, shown at lower left 
(with six “key tiles” boxed). The markings making up the crossing tiles are illustrated in the upper right. 
At lower right, we give compressed notation to refer to the crossing tiles.

The erasing mapping from the matching rule tiling space is well-defined onto the corre-
sponding hierarchical tiling space (and almost everywhere well-defined onto substitution 
tiling spaces).

Each of the sets of tiles will enforce the tiling substitution systems specified in the 
theorem.

One note: The hierarchies of the tiling substitution are combinatorially those of the 
Robinson tiling, yet the two structures are not mutually locally derivable — the scalings 
are incompatible and the supertiles cannot be even quasi-isometric.

3.2. Defining T1

The first set, illustrated in Fig. 9 denoted T1, consists of 27 tiles, all with d unused 
and suppressed. T1 has four outward tiles, which we denote T+, which may be uncornered 
or cornered and markings (+)(+)(++1)(+-0) and (+)(+-2)(+)(++3), illustrated at top left 
of Fig. 9.

Our twenty-three crossing tiles, Thv have edge markings of the forms shown in Fig. 9. 
For simplicity, as in the table in at middle right of the figure, we denote these markings 
[hv] where h = -, 0, 1, 3, -3 denotes the tile’s row in the table (and is based off of the 
west markings); and v = +, 0, 1, 2, 3 denotes its column. Note that the tiles [00], [01] are 
not included in Thv, and hence not in T1 = T+ ∪ Thv.

The orientation of the vertical marking relative to the horizontal ones are exactly as 
shown — which due to symmetry makes no difference except for the tiles with horizontal 
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Fig. 10. Cornered outward tiles can only lie in half domino blocks, specified by the type and orientation of 
the uncornered outward tile at its center. There are only five possibilities, because of the asymmetry of 
the horizontal marking in the tile at bottom left. For each of the possible half blocks, one or two key tiles, 
outlined in the figure, are essential. These “atomic sets” are a signature for each type of block. (The rest 
of the crossing tiles, that are not highlighted, are more common and relegated to U1.)

marking (--1)(-+2) and a vertical marking other than (+). In Fig. 10 we see the necessity 
of this restriction.

We formally define:

We define
T1 := T+ ∪ Thv, where T+ is our set of outward tiles and

Thv := [(0, 1, 3, -3, -)(0, 1, 2, 3, +)] \ {[00], [01]}
= {[02], [03], [10], [11], [12], [13],

[30], [-30], [31], [-31], [32], [-32], [33], [-33],
[-0], [-1], [-2], [-3], [-+], [0+], [1+], [3+], [-3+]}

Define “key tiles”, where signed markings cross, and the rest:

K1 := [(0, 1)(0, 1, 2, 3)] \ {[00], [01]} = [(0, 1)(0, 1, 2, 3)] ∩ Thv

U1 := Thv \ K1

3.3. The underlying combinatorial structure

Consider any subset T of our twenty-seven tiles T1: If T is to admit any tiling at all, 
it must include one of the cornered outward tiles, and every tile in any such tiling is a 
cornered outward tile or shares a corner with one. As in Fig. 7, these cornered tiles can 
only lie within well-defined 3 × 7 “domino blocks”.

In Fig. 10, we consider the possible ends of these domino blocks, depending on the 
particular type and orientation of the uncornered outward tile at their centers. Because 
of the asymmetry of the (1) − (2) horizontal markings in the [1∗] tiles, only five of these 
half dominos are possible, and in Fig. 11 we see that these can be united into exactly 
four possible 2 × 4 blocks, denoted H, I, J and U, up to just one remaining (c) marking, 
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Fig. 11. The tiles in T1 admit four (2 × 4)- blocks, U, J, I, H — The markings, and most of the tiles, of each 
block are determined, leaving only a central band to be specified to fully define a block. Each block has 
matching markings on either end, their direction specified for U, J and H blocks as shown. The sets of tiles 
TU, TJ, TI, and TH that they require are outlined above, and are given in compressed graphic form at left 
in Fig. 12. A fifth block can be formed, but cannot appear in any tiling: As indicated at right, at (1), the 
marking (+-1) can only meet a marking (++0) of a block of type U. But then no tile may fit at(2).

presumably from some higher level block, to be determined when useful to do so. In each 
case, there are a few tiles that are essential in order to assemble each type of block. We 
define:

key tiles the rest

TU := {[11], [-0], [0+], [1+]}

TJ := {[03], [10], [-1], [-2], [0+], [1+]}

TI := {[02], [-3], [1+]}

TH := {[12], [13], [0+], [-+]}

For example, if a subset T admits a tiling that includes a copy of block J, then the 
tiles [01] and [30] must be in T — that is, if they are not, this block is in no tiling 
admitted by T .

3.4. Deriving the sets T , T , T and T

The remaining details are fairly tedious and less illuminating than those of T2. One 
may safely skip the remainder of this section and proceed to Section 4, accepting that 
T admits, and only admits U, H and J blocks.

We will calculate precisely which matching rule tiles are needed to allow, and only 
allow, particular blocks, by substituting on marked blocks, beginning with a generic X(x), 
and then continuing on any new blocks that arise, tallying up needed tiles as we proceed.

In Fig. 12 we give indices for referring to the markings at various positions in any of 
our blocks, with respect to some arbitrary orientation. Note that the orientation (that is, 
the a and b parts) is determined in all the markings i, iii–vii. The direction, that is, the 
a-channel, of the markings viii and ix is determined, and nothing about the marking ii
is determined. A block will have a pair of matching markings ii (top) and -ii (bottom).
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Fig. 12. (Left) We indicate subsets of Thv — TH, TI, TJ and TU — that are the building blocks of our aperiodic 
subsets of T1, four of which are shown at bottom: T , T , T and T . Note that T , T , and U1 are all 
subsets of T , but T and T each contain tiles the other does not. (Right) Indices for the markings on a 
marked block, the preimage of a domino under our natural local derivation, that we will use in substituting 
on marked blocks.

For each of the following, X(x) indicates a block of type X, with x being the marking 
ii. Working from Fig. 12, for block

U(x) we have i = iii = iv = vii = +; v = vi = 1; viii = ix = 0; ii = x;
J(x) we have i = iii = v = vii = +; iv = 3; vi = 0; viii = 1; ix = 2; ii = x;
I(x) we have i = iii = v = vi = +; iv = vii = 2; viii = ix = 3; ii = x;
H(x) we have i = iii = 2; iv = vii = viii = ix = +; v = vi = 3; ii = x .

The substitution The substitution on X(x) gives

where [(viii/ix)(x)] indicates [viii x] or [ix x] depending on the orientation and sidedness 
of the marking x, and the sidedness of the markings viii and ix. The canonical notation 
for these tiles is easily resolved by examination.

Recalling that for U, i = iii = iv = vii = +; v = vi = 1; viii = ix = 0 and for I, 
i = iii = v = vi = +; iv = vii = 2; viii = ix = 3, we have

U(x) 	→ U(+) I(x) I(−x) [11] [-0] [-1] [1+] [-+] [0x]
I(x) 	→ U(2) I(x) I(−x) [-3] [1+] [-+] [3x] [-3x]



424 C. Goodman-Strauss / Journal of Combinatorial Theory, Series A 160 (2018) 409–445
We iterate this further on U(+), U(2) and then I(+) and I(2). Obtaining no more, we halt 
fairly quickly, with just sixteen tiles, T . (Observe that [02] is the marked tile of Fig. 8, 
arising precisely within a U(2) within any parent I(x) block.)

T := T+ ∪ {[02], [11], [32], [-32], [-0], [-1], [-3], [-+], [0+], [1+], [3+], [-3+]}

The substitution Similarly, with the substitution on X(x) we have

Noting that for J, i = iii = v = vii = +; iv = 3; vi = 0; viii = 1; ix = 2 we have

J(x) 	→ J(0) J(+) [03] [0+] [-1] [-2] [-3] [-+] [1x] [3x] [-3x] [-x]

Further substituting on J(+) and J(0) we have additional tiles [10], [30], [-30], [-0], [1+], 
[3+] and [-3+]. We define:

T := T+ ∪ {[03], [10], [30], [-30], [-0], [-1], [-2], [-3], [-+], [0+], [1+], [3+], [-3+]}

The substitution For , we have
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Since we have for U, i = iii = iv = vii = +; v = vi = 1; viii = ix = 0 and for H, 
i = iii = 2; iv = vii = viii = ix = +; v = vi = 3, we obtain

U(x) 	→ U(+) H(0) [11] [-1] [1+] [-+] [0x] [3x] [-3x] [-x]

H(x) 	→ U(+) H(+) [12] [13] [-2] [-3] [3x] [-3x] [-x]

Iterating once more on U(+), H(+) and H(0), we have tiles

T := T+ ∪ {[11], [12], [13], [30], [-30], [-0], [-1], [-2], [-3], [-+], [0+], [1+], [3+], [-3+]}

The substitution We face an additional complication when applying : we have mul-
tiple cases, depending on the orientation of the substitution with respect to the tile; in 
particular, taking d to be one of the symmetries of the domino tile , d acts on the 
labels i, ii, . . . ix.

On a generic block X(x), we have

(Note the orientation of the marking x must already be accounted for in reconciling tiles 
of the form [hx], regardless of the symmetry d.)

Because of the symmetries that H and U do have, irrespective of d,

H(x) 	→ J(2) J(3) H(+) U(+) [12] [13] [-2] [-3] [0+] [-+] [3x] [-3x] [-x]

U(x) 	→ J(1) J(+) H(0) U(+) [11] [-1] [0+] [1+] [-+] [0x] [3x] [-3x] [-x]

When d preserves left and right in the figure above (that is, d = 0, 2 in the notation of 
the following section) we have
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J(x) 	→ J(0) J(+) H(2) U(3) [-1] [0+] [1+] [-+] [1x] [3x] [-3x] [-x]

and we further iterate on J(+, 0, 1, 2, 3), H(+, 0, 2), U(+, 3).
When d reverses left and right in the figure above (that is, d = 1, 3) we have

J(x) 	→ J(+) H(1) U(+) [03] [10] [-0] [-2] [-3] [1+] [-+] [1x] [3x] [-3x] [-x]

and we iterate on J(+, 1, 2, 3), H(+, 0, 1), U(+).
However in either case, regardless of d, we require all of the following tiles, and no 

more:

T := T1 \ {[02]}

3.5. Concluding the proof of Theorem 1

We observe that the substitution
includes blocks I, U, but not blocks J, H;
includes blocks J, but not blocks H, I, U;
includes blocks H, U, but not I, J; and
includes blocks H, J, U, but not I.

We will say that sets A and B are “mutually excludable” if A \B and B \A are both 
non-empty, or equivalently that A 
⊂ B and B 
⊂ A. The set of tiles

T contains TI and TU but is mutually excludable with TH and TJ, hence with 
T , T , T .

T contains TJ but is mutually excludable with TH, TI and TU, hence with T and 
T .

T contains TH and TU but is mutually excludable with TI and TJ, hence with T
and T .

T contains TH, TJ and TU but is mutually excludable with TI hence with T .
On the other hand, T , T , and U1 are each subset of T .
Consequently

the set 
of tiles

admits 
blocks

but does 
not admit

hence admits 
supertiles

but is insufficient 
to admit supertiles

and thus can and only can 
enforce substitution

T I, U H, J , ,

T J H, I, U , , .

T H, U I, J , , .

T H, J, U I , , { , , } .
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Taking unions of these sets,

the set 
of tiles

admits 
blocks

but does 
not admit

hence admits 
supertiles

but is insufficient to 
admit supertiles

and thus can and only can 
enforce substitution

T ∪ T I, J, U H , , { , }

T ∪ T H, I, U J , , { , }

T ∪ T H, J, U I , , (*) { , }

T ∪ T ∪ T H, I, J, U , , (*) { , , }

T1 H, I, J, U , , , { , , , }.

Just on the basis of which blocks each set of tiles can admit, we have now established 

nearly every case stated in the theorem. The cases marked (*) above require one further 
observation: T ∪ T and T ∪ T ∪ T are proper subsets of T and thus cannot admit 
blocks.

Iterating the construction of larger and larger blocks of the types admitted by these 

subsets, we can form arbitrarily large configurations that are locally derivable to larger 
and larger supertiles in the corresponding tiling substitution system.

Each of these sets can tile the plane, because it admits configurations covering ar-
bitrarily large disks — this standard argument appears as The Extension Theorem, 
Theorem 3.8.1 in [7] and is often cited as “by compactness” or “by Koenig’s Lemma”.

On the other hand, these tiles admit no other tilings whatsoever.
Consider any subset T of T1. We have shown that in order to admit a tiling, T must 

include all of the outward tiles of T+, and that in any tiling by T , the cornered outward 

tiles can only lie in blocks H, I, J and U; these can only be admitted if the corresponding 

sets TH, TI, TJ, or TU are included in T . These must lie in larger and larger marked 

supertiles, ad infinitum. The only marked supertiles that any of these sets admits are 

those indicated in the table above. That is, every tiling in Σ(T ) is locally decomposible 

to a hierarchical tiling defined by the corresponding tiling substitution system.
Moreover, within these tilings, these hierarchies are unique, and the tilings are thus 

non-periodic. These tile sets are aperiodic.
Finally, a few last observations: Just as described in the proof of the first case, in 

each of our named aperiodic sets T ⊂ T1, T ∪ U1 admits just the same tilings, with any 

additional tiles in U1 \ T unused and wasted. On the other hand, in order to admit the 

entire such space, and not restrict which rules may be applied, every tile in T appears 
after iterating the substitutions, and so is essential. And in particular, no proper subset 
of T , T or T even admits any tiling at all.

Though the and the substitution tilings are periodic, the matching rule tilings 
enforce hierarchies — each corner tile lies in a larger and larger, unique, hierarchy of 
marked supertiles. The tilings the tiles admit are non-periodic and so the sets of tiles in 

Theorem 1 are aperiodic.
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4. 25380 aperiodic subsets of 211 tiles

Theorem 2 produces, for any of the substitution systems, a set of tiles that enforce 
it, as illustrated in Example 4.5. Our goal in this section is to define our terms in order 
to state and prove:

Theorem 2. For each tiling substitution σS, with symbol S, the set of tiles

TS := T+2 ∪ T0 ∪
(⋃

α∈S
Tα

)
∪

⎛
⎝ ⋃

α,β∈S
Tβ→α

⎞
⎠

is aperiodic, enforcing the substitution σS. Moreover, any subset of U2 ∪ TS that enforces 
σS must contain TS. If S is deterministic, no proper subset of TS admits any tiling.

Essentially Theorem 2 states that any given substitution σS, denoted by a to-
be-defined symbol S, is precisely enforced by the union of the “atomic sets of tiles” 
corresponding to the “atomic symbols” making up S, together with some standard cor-
nered and crossing tiles.

One may safely have passed over the latter half of Section 3; here we use only that 
the set of tiles T admits exactly the blocks J, H and U of Fig. 11.

Section 4.1 describes the d-channel markings 0, 1, 2 and 3. Section 4.2 presents a 
system for encoding substitution rules and the atomic substitutions of which they 
are comprised. In Section 4.3 we define our master set T2 and its subsets T0, T+2 . In 
Section 4.4 we define the atomic sets of tiles, the sets Tα, Tβ→α of the theorem, with 
fully worked out examples in Section 4.5.

Finally, in Section 4.6, the theorem now being well-defined, we complete its proof, 
which has essentially the same outline as in Section 3.1, that of [1] onward, although we 
must fully industrialize the arguments: For each substitution system we show that the 
defined tiles can form, and are necessary to form, arbitrarily large marked supertiles. In 
Section 5 we carefully count these sets up to symmetry.

4.1. The d-channel markings

As illustrated in Fig. 14 and defined in Section 2, our d-channel markings are 0, 1, 2, 3, 
in Z2 ⊕Z2 under nim addition, that is, addition, without carry, on binary strings (so for 
example 2 + 3 = (10) + (11) = (01) = 1). These correspond to the symmetries of the 
domino tile, within some local framing: nim adding 1 corresponds to a reflection across 
a vertical mirror line; nim adding 2 to a reflection across a horizontal one; taking both 
together, nim adding 3 corresponds to a two-fold rotation; and of course nim adding 0
accomplishes nothing.

As sketched in Fig. 15, with these new markings we can first control where the different 
kinds of blocks within a supertile must lie: in Section 4.3 we will define “key tiles”, special 
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Fig. 13. A few examples of tiling substitution systems, with dominoes colored as . Examining 
a fuller catalogue, as in [5,6], one notices a wide variety of qualitative differences in statistical structure, 
which awaits quantification.

Fig. 14. The d-channel markings 0, 1, 2 and 3 are in Z2 ⊕ Z2 under nim addition, framing the orientation 
of each supertile. The markings naturally act upon each other and upon the variables d, b, p, q for generic 
framings: For example, at top center, we reflect a domino top to bottom, nim adding +2 to the markings 
0, 1, 2 and 3, the results of which we can see in the figure or read off in the +2 column (or row) of the table 
at right. At bottom center, +3 acts on d, b, q, p and on the domino by a two-fold rotation. As these digits 
act on the d-channel, they naturally act on markings, tiles, tilings and tiling spaces, as we use in defining 
our tiles in §4.3 and 4.4, and in counting tiling matching rule spaces up to symmetry in Section 5.

Fig. 15. We (arbitrarily but canonically) frame each block with d-channel markings as shown, with a J
block marked 0, another marked 2, and a H, U pair together marked 1 and 3. The “key tiles” lie at the circled 
locations, where signed markings meet. We restrict the allowed vertical (cd) and horizontal (c) markings, 
allowing a few possibilities for the horizontal (d), those shown, so that we can inductively force our supertiles 
to be well-formed blocks as we discuss further in §4.6. We may further restrict the orientations of the 
children with respect to that of the parent, by further limiting which of these horizontal d-channel markings 
to permit — these are our atomic subsets of K2. The small diagrams at bottom indicate the locations of 
the key tiles in the table of Fig. 18, which shows all of T2.
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Fig. 16. The d-channel markings encode the relative orientations of the children supertiles with respect to a 
parent supertile, allowing us to denote any substitution rule as a quadruple S = stuv of subsets of our 
digits: At right in Fig. 3 we show 1101; the partial rule (with s = ∅) is shown at left in Fig. 17; and a few 
more examples appear in Fig. 13. Catalogues of examples appear in [5] and an interactive Mathematica
demonstration is at [6].

crossing tiles K2, lying at the circled locations in the figure, where signed markings meet. 
These key tiles exactly permit a pair of J blocks in the 0 and 1 quarters of a supertile 
(by using only the 0 and 1 markings in the d-channel of the vertical markings of the key 
tiles of TJ) and similarly allow a pair of H, U blocks on the 2 and 3 quarters of a supertile 
(by using only the 2 and 3 markings in the d-channel of the vertical markings of the key 
tiles of TH and of TU). We arbitrarily take this arrangement as canonical.

There are various possibilities for the horizontal d-channel markings for a tile in K2, 
depending on its location in the marked configuration of Fig. 15. For example the pair 
tiles at left both appear at a short end of a J block, and so their horizontal markings 
might be, and could only be, a 0-1 pair or a 2-3 pair. Similarly, the eight tiles at right 
might have, and could only have, 0 or 1 or 2 or 3 for the d-channel of the horizontal 
marking. In Fig. 18 the key tiles K2 are illustrated within T2; and they are defined more 
precisely on page 434.

By further restricting which horizontal d-channel markings to include or exclude in a 
set of tiles from K2, we can determine how these children blocks can be oriented within 
a parent configuration.

To this end, we further use these digits 0, 1, 2, 3 to define an ad hoc (but intentionally 
chosen) encoding of how a child supertile may fit within a parent supertile, that is, the 
relative orientations of each with respect to each other. For each of the four children, we 
arbitrarily fix a specific orientation to be 0, and define the other orientations for that 
child accordingly, as indicated in Fig. 16.

In a supertile, for each of the four children, denoted s, t, u and v, we specify which 
orientations we will allow, defining a code for the substitution tiling systems, described 
shortly in Section 4.2. Such a code S will be composed of elementary, “atomic” symbols 
α, β ∈ S that each describe a portion of what is allowed in the full substitution rule σS
given by S.

For example, the symbol ·320 (itself only a “partial” substitution rule) is shown at 
left in Fig. 17; it is composed of atomic symbols ·3··, ··2·, and ···0.

In Section 4.4, for any atomic symbols α, β, we define a corresponding atomic set of 
tiles Tα, Tβ→α each of which is necessary and sufficient to allow a particular relationship 
between a child and parent supertile. At right in Fig. 17, we see the atomic sets needed 
for any substitution that includes the partial symbol ·3·0, namely T·3··, T···0, T·3··→···0, 
and T···0→·3··.
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Fig. 17. In the compressed notation described in Section 4.2, the system · 3 2 0 is shown at left. At right, the 
atomic subsets necessary and sufficient (together with a full complement of other atomic sets) to include 
from T2 in order to enforce ·3·0.

Once we define our terms, further below, Theorem 2 states that a given a sub-
stitution σS with symbol S is precisely enforced by the union of the atomic sets of tiles 
corresponding to the atomic symbols making up S, together with some standard cornered 
and crossing tiles.

An example of atomic sets of tiles is illustrated at upper right in Fig. 17. In Exam-
ple 4.5 we calculate TS for S = 1101, with 67 tiles, and 1023, with 65.

Catalogues of color figures of substitution tilings are in [5], and the Mathematica
demonstration at [6] is useful for gaining intuition. Though we actually derive 50625 
aperiodic sets below, most of these occur in MLD pairs, which we carefully out count in 
Section 5.

4.2. Symbols for tiling substitution rules:

We define symbols describing tiling substitution rules, and their constituent, atomic, 
partial tiling substitution rules. (Again, see [5] for many examples.)

Each symbol S is a list of four subsets s, t, u, v of {0, 1, 2, 3}, including possibly the 
empty set; each of these subsets gives the allowed orientations of a corresponding child 
within a parent supertile, as shown in Fig. 16. We take many notational conveniences. 
Any singleton as {a} is denoted more simply as a. Any empty digit {} we denote ·. If 
every digit {0, 1, 2, 3} is used, we write ∗. Any other subset {a, . . . , z} of digits, we write 
as (a..z). The full substitutions are tiling substitutions with no empty digits, and are 
precisely those that give well-defined substitutions in the sense of Section 1. The full 
substitutions with all digits singletons are deterministic.

For example, if S = (12)222, as at top right of Fig. 13, then s = {1, 2}, t = {2}, 
u = {2} and v = {2}. As formally defined as in Section 1 there two deterministic tiling 
substitution rules, denoted 1222, 2222 which together give a (non-deterministic) tiling 
substitution system σ(12)222. (The system at bottom right of Fig. 13 has 24 constituent 
deterministic rules.)
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The atomic substitutions are partial substitutions with just one singleton among its 
digits with all the other digits being empty. Given a symbol S, we will write that the 
atomic substitution α ∈ S if its one non-empty digit is one of the digits in S. For example, 
the atomic substitutions 0···, 1···, ·2··, ··3· and ···1 are exactly those that are in the full 
substitution (01)231 for the tiling substitution rule σ(01)231.

The symmetries of the domino naturally operate on symbols in the d-channel, and in 
Section 5 we find useful notation such as m + 2 meaning (abc(d + 2))m (and so too, for 
example, by definition (+) + 2 = (+)).

4.3. The second set of tiles T2 and its basic subsets T+2 , K2, U2, T0

In Fig. 18 we give notation for our markings and our tiles in T2:
We define sixteen outward tiles T+2 , exactly those of T+, recalling the notation of 

Section 2, with a choice for the value of d = 0, 1, 2, 3 — that is, our outward tiles maybe 
cornered or uncornered and have markings (+)(+)(++1d)(+-0d) or (+)(+-2d)(+)(++3d).

We name our new cross tiles [xy|zw], in [ -, (013(-3))(0123) | +, (0123)(0123) ] — x
and z are the abbreviations for the horizontal and vertical markings of Fig. 9, but we 
are no longer suppressing the marking d, which now may be any of 0, 1, 2, 3 =: y, w.

As before if the horizontal marking is the plain (-000), we write - for xy; otherwise:

west and east denoted
(--0d) (-+0q) [0d|
(--1d) (-+2d) [1d|
(--3d) (-+3b) [3d|
(-+3d) (--3b) [-3d|

Similarly, we denote north and south vertical markings (++zw) and (--zw) as |zw]. 
In the special case that the north marking is (±000), we take |zw] as |+].

Together these give names for our cross tiles of the form [xy|zw]. These names are 
unique with a few exceptions: In such cases, such as [30|+] = [31|+], we take the lexi-
graphically earlier name to be canonical.

It will be useful to apply digits in 0, 1 . . . , d, etc. to our markings and so to our tiles 
in T2, writing, [xy|zw] + d to mean [x(y + d)|z(w + d)], and thus to our sets of tiles and 
the tiling spaces they enforce.

For example, we will write that T··d· includes [1b|31], meaning that, taking d as 
0, 1, 2, 3:

T··0· includes [11|31];
T··1· includes [10|31];
T··2· includes [13|31]; and
T··3· includes [12|31].

Tiles with x = 3 or -3 will always be used in matching pairs, which we denote

�3d|zw� := �-3q|zw� := {[3d|zw], [-3q|zw]}
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Fig. 18. Our second set of tiles T2, the tiles of Fig. 9), but using d = 0, 1, 2, 3 in our markings. At top 
sixteen outward tiles, T+2 . The cross tiles, indicated in the table, are named [xy|zw], where [xy| denotes 
the horizontal markings, and |zw] the vertical ones. (We give a few for practice.) Some names describe the 
same tile — for example [00|+] = [02|+] and we always use the lexigraphically earlier one. Tiles [3d|zw] and 
[-3q|zw] will always be used in pairs, �3d|zw� = �-3q|zw�, such as those named here. We use only 195 of the 
possible cross tiles in T2: At lower left, we indicate the sets of key tiles K2 — which particularly determine 
which systems are enforced — and the rest, U2.

taking the first notation as canonical. Note that �30|+� = �31|+� and �32|+� = �33|+�, 
and as always, we take the lexigraphically earlier name.
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We define forty key tiles, indicated at the center upper bottom of Fig. 18, and described 
and motivated in Fig. 15.

K2 := {[0d|30], [0d|32], [1d|00], [1d|02], [1d|11], [1d|13], [1d|21], [1d|23], [1d|31], [1d|33];
d = 0, 1, 2, 3}

We do not use every cross tile: we will use 155 remaining tiles, U2, shown at bottom of 
Fig. 18:

U2 := { [xy|zw] with x = 3, -3; y, z, w = 0, 1, 2, 3}
∪ { [-|zw] with z, w = 0, 1, 2, 3}
∪ { [xy|+] with xy = +, 00, 01, 10, 11, 12, 13, 30, -30, 32, -32} ∪ {[-|+]}

The subset T0 of nineteen U2 will be common to all of our sets of cross tiles:

T0 := {[-|+], [00|+], [01|+], [-|00], [-|01], [-|02], [-|03], [-|10], [-|11], [-|12], [-|13],
[-|20], [-|21], [-|22], [-|23], [-|30], [-|31], [-|32], [-|33]}

4.4. Atomic sets of tiles in T2

We define atomic sets of tiles, corresponding to the atomic substitutions, and to 
ordered pairs of atomic substitutions:

For each atomic α, we will claim that the sets of tiles in the following table are 
necessary in order to have a supertile of that type, proven in Section 4.6, and verifiable 
through the figure below, continuing the construction of Fig. 15. (Since it happens that 
[00|+] and [01|+] must be included in every subset of T2 that tiles the plane, we do not 
include them in these definitions, but include them instead in the common set of tiles 
T0.)
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Sets Tα : key tiles the rest
Td··· = {[1q|00], [0b|30], [1d|+], [1b|+], [1p|+]}
T·d·· = {[0d|32], [1p|02], [1d|+], [1b|+], [1q|+]}
T··d· = {[1d|33], [1b|31], [1q|23], [1p|21]}
T···d = {[1q|11], [1p|13], [1d|+], [1b|+]}

Similarly, in Fig. 19, we enumerate, for each ordered pair α, β of atomic substitutions, 
pairs of tiles Tβ→α, which we claim are necessary for a supertile of type α to have a parent 
of type β, as shown in the proof of Theorem 2 by following substitutions on marked 
blocks, and verifiable using the diagrams in the table.

4.5. Examples

For example, 1101 has atomic substitutions 1···, ·1··, ··0· and ···1; similarly 1023 has 
atomic substitutions 1···, ·0··, ··2· and ···3. In addition to T+2 ∪T0, T1101 and T1023 include 
exactly the following atomic sets of tiles:

T1101 = T+2 ∪ T0 ∪
T1··· [13|00], [00|30], [10|+], [11|+], [12|+]
T·1·· [11|32], [12|02], [10|+], [11|+], [13|+]
T··0· [10|33], [11|31], [12|23], [13|21]
T···1 [13|11], [12|13], [10|+], [11|+]
T1···→1··· �31|+� = �30|+�
T1···→·1·· �31|+� = �30|+�
T1···→··0· �31|10�
T1···→···1 �30|+�
T·1··→1··· �30|+�
T·1··→·1·· �30|01�

T·1··→··0· �31|21�
T·1··→···1 �31|31�
T··0·→1··· �31|33�
T··0·→·1·· �30|23�
T··0·→··0· �30|+�
T··0·→···1 �30|+�
T···1→1··· �30|+�
T···1→·1·· �30|13�
T···1→··0· �31|01�
T···1→···1 �30|+�

(32 tiles plus the 16+19 in T+2 ∪ T0 common to all our aperiodic subsets of T2.)
T1023 = T+2 ∪ T0 ∪

T1··· [13|00], [00|30], [10|+], [11|+], [12|+]
T·0·· [00|32], [13|02], [10|+], [11|+], [12|+]
T··2· [12|33], [13|31], [10|23], [11|21]
T···3 [11|11], [10|13], [13|+], [12|+]
T1···→1··· �31|+� = �30|+�
T1···→·0·· �30|+�
T1···→··2· �33|10�
T1···→···3 �33|+� = �32|+�
T·0··→1··· �30|+�
T·0··→·0·· �30|+�

T·0··→··2· �33|12�
T·0··→···3 �32|+�
T··2·→1··· �31|23�
T··2·→·0·· �31|33�
T··2·→··2· �32|+�
T··2·→···3 �32|+�
T···3→1··· �31|13�
T···3→·0·· �30|+�
T···3→··2· �32|01�
T···3→···3 �32|+�
(30 tiles plus the 16+19 in T+2 ∪ T0).
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Fig. 19. Defining sets of tiles Tβ→α.
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(Sets enforcing non-deterministic substitutions are of course the union of the sets 
enforcing their constituent deterministic substitution systems, and consequently take 
longer to write out. Here all together, we have the set T1(01)(02)(13) = T1101 ∪ T1023.)

4.6. Proof of Theorem 2

Our main theorem is now well-defined and we turn to its proof. We must show, for 
each tiling substitution, with symbol S, the set of tiles

TS := T+2 ∪ T0 ∪
(⋃

α∈S
Tα

)
∪

⎛
⎝ ⋃

α,β∈S
Tβ→α

⎞
⎠

does admit a tiling, and only admits tilings that are locally decomposable to S hierarchical 
tilings; and moreover that no subset will suffice. The remaining claims will follow from 
the details of the proof. We have in fact done most of the work, which we mainly need 
to check in an efficient manner.

We begin by noting there is a natural “forgetting” map from the tiles of T2 to those 
of T ⊂ T1: simply ignore the d-channel markings. For the cross tiles, this map takes 
[xy|zw] → [xz].

We easily verify that the key tiles K2 are mapped onto the key tiles in T (that is, 
the key tiles K1 of T1, with the exception of [02]) and the rest of the tiles U2 ⊂ T2 to the 
rest of the tiles U1 ⊂ T1.

This map gives a local decomposition from tilings and configurations, Σ(T2) ⊂ C(T2), 
admitted by T2 to Σ(T1) ⊂ C(T1). Consequently, any tiling admitted by T2 (presuming 
there are any) can only be a (further) marked hierarchical tiling in the { , , } tiling 
substitution.

More particularly, each outward tile must lie in a unique hierarchy of larger and larger 
J, H or U supertiles, themselves framed by outward tiles — cornered outward tiles at the 
first level only, uncornered outward tiles thereafter.

The definition of our key tiles ensures that these can only be arranged into the tiling 
substitution, as in Fig. 15: Suppose a J is in the corner d in a supertile. Then in the 
supertile we must have tiles of the form [1d|0d] and [0d|3d] (where d is the orientation 
of the child, and not important at this moment). In our key tiles, we can have, and only 
can have the possibility that d = 0, 2.

Similarly, suppose a U is on the d, q end of the supertile. Then in the supertile we must 
have tiles of the form [1d|1d], [1q|1q] (where d, q indicate the orientation of the child and 
are not important at this moment). In our key tiles we can have, and only can have the 
possibility that d, q = 1, 3. And for a H on the d, q end of the supertile, we must have 
[1d|2d], [1b|2q], [1q|3d], [1p|3d] — again, we can have and only can have that d, q = 1, 3.

Consequently, any tiling admitted by T2, if there are any, is a marked hierarchical 
tiling. We’ll distinguish the two Js as J0 (in the 0 corner of any supertile) and J2 (in the 
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2 corner). As before, we calculate the blocks and tiles needed to assemble a supertile out 
of smaller pieces. The analysis is essentially the same:

Let s, t, u and v be the orientations of J0, J2, H, U respectively. Recall that each of these 
acts on the labels i, ii, . . . ix, and that a block X(x) is further specified by the marking 
x at ii.

On a generic supertile X(x), the children oriented by the domino symmetries s, t, u, v
in 0, 1, 2, 3, we have

where as before, we resolve [(viii/ix)|x] by examination. We obtain the marking y in the 
pair �3y|x� from the orientation and direction of the marking x, that is,

if (ab)x = then y =
+- or +0 0

++ 1
-+ or -0 2

-- 3

Substituting a second time on X(x),

in the substituted block we must have the tile
sJ0(i) [10|i]
tJ2(vi) [12|vi]
vU(iv) [01|iv]

In particular, as indicated in the figure above, any second level or larger marked X(x)
must include the six tiles [10|i], [11|iii], [01|iv], [13|v], [12|vi] and [00|vii] (highlighted 
in black), as well as the tiles [-|iii], [-|v], [-|vii], [-|viii] and [-|x] (indicated with a gray 
background) and the tile [(viii/ix)|x] (in the center of the supertile).
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Recall, for each atomic symbol α we have defined a set of tiles Tα, and note that these 
sets are precisely of this form: tiles with horizontal markings [00|, [01|, [10|, [11|, [12| and 
[13| — though we relegate [00|+], [01|+] to T0, as they will be needed in every tiling 
admitted by any subset of T2.

We easily check that if α ∈ S, then any supertile of type α must include the tiles in Tα
— formally we follow the substitutions through and for intuition we examine the figure 
accompanying the definition of Tα.

Similarly, for each pair of atomic symbols α, β, we have defined sets of tiles Tβ→α and 
Tα→β . Note that each of these is of the form �3x|yz�. Following the substitutions above, 
(examining the tiles outlined in the figure) we see that any supertile of type α within 
parent supertile of type β, must include the tiles in Tβ→α, for intuition examining the 
figures accompanying the definition above.

In other words, if α, β ∈ S, any set of tiles enforcing the S tiling substitution must 
include the sets of tiles Tα, Tβ , Tα→β , Tβ→α.

Conversely, if a set of tiles T includes all of

TS = T+2 ∪ T0 ∪
(⋃

α∈S
Tα

)
∪

⎛
⎝ ⋃

α,β∈S
Tβ→α

⎞
⎠

then T can form arbitrarily large supertiles arising from the S tiling substitution system, 
and hence can tile the plane.

Moreover, noting that every pair of distinct Tα, Tβ is mutually exclusive, TS can only
admit supertiles of this form.

Finally, any subset of T2 that enforces a given σS must include TS.
In short, TS enforces the S tiling substitution system, and every subset of T2 that does 

as well must contain TS, concluding the proof of Theorem 2.

5. Counting tiling substitution systems and aperiodic sets of tiles

In this section we carefully count out 25,380 hierarchically distinct, regular, elementary 
tiling substitution systems, sorted into the “lots” of the title of this paper, our tiles 

and substitutions organized by atomic substitution symbols.
We have increased the number of explicitly described aperiodic sets of tiles hundreds-

fold, within a single construction, itself only an example of the kinds of hierarchical 
control one might routinely, even robustly expect.

This flexibility is easily generalizable, and (given the computational universality at 
the bottom of this subject) one expects there exist relatively small sets of tiles that have 
staggeringly complex collections of distinct aperiodic subsets.

But we must take symmetry into account — How many distinct aperiodic sets of tiles 
have we actually found?

In order to approach this more carefully, we must define what we mean by “distinct” 
sets of tiles, and by “distinct” tiling substitution systems. Further examples, such as 
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those in Section 6 and [5], may inspire more refined definitions. And the distinction 
of these, or not, as dynamical systems upon topological spaces awaits industrial scale 
computation of their invariants.

We will define two sets of tiles, say T and T ′, to be “equivalent” if the sets of tilings 
Σ(T ) and Σ(T ′) are mutually locally decomposible, and “distinct” otherwise.

One might reasonably point out that among our sets of tiles, only 128 (up to mutually 
local decomposibility) — those enforcing the deterministic tiling substitutions — give 
tiling spaces that are minimal as dynamical systems. However, the main point of our 
construction is that there is tremendous flexibility, easily applied and extended if not 
needlessly restricted. (Each minimal space has only measure zero and lies within the 
boundary of any of the spaces that properly contain it.)

From any point of view it seems fair to claim that we have substantially increased the 
number of explicitly described aperiodic sets of tiles.

We will define two tiling substitution systems (here on just the unmarked domino) 
to be hierarchically equivalent if every hierarchical tiling in one system is also a hier-
archical tiling in the other, and every supertile (at every level) in the first tiling is also 
a supertile in the second. More precisely, recall a substitution map σ acts on the sets 
of configurations C(T ) admitted by T ; if the map is one-to-one, particularly on tilings, 
then σ has unique decomposition and hence has a well-defined inverse on its image. Two 
tiling substitution systems on the same tiles (here, just the domino) are hierarchically 
equivalent if and only if this inverse map is equivalent, with the same domain. (The 
examples below, of non-periodic substitution tilings with non-unique decomposition, are 
essentially substitution tiling systems that produce the same hierarchical tilings, but are 
not hierarchically equivalent.)

We define an equivalence on our codes that, as we shortly prove, captures hierarchical 
equivalence on our tiling substitutions σS and σS′ :

Taking nim addition on the d-channel markings, as in the definition of our code, for 
tiling symbols S = stuv, S′ = s′t′u′v′, we define S′ ≈ S to hold if and only if S = S′

or (stuv)′ = (tsuv) + 3, that is, if and only if s = t′ + 3, t = s′ + 3, u = u′ + 3 and 
v = v′ + 3. For example, 1 (02) 3 (012) ≈ (13) 2 0 (123) and ·(02)·3 ≈ (13)··0.

In a full symbol, each of s, t, u and v are one of the 15 non-empty subsets of {0, 1, 2, 3}. 
There are thus 154 = 50625 distinct full tiling substitution symbols, and for each of 
these we have produced an aperiodic set of tiles. But we have overcounted with respect 
to this symmetry:

A symbol S = stuv is equivalent to one other distinct symbol, unless s = t + 3, 
u = u + 3 and v = v + 3. There remain fifteen possibilities for s, determining t, and 
three each for u and v, namely {0, 3}, {1, 2} and {0, 1, 2, 3}, or 15 ·32 = 135 symbols not 
related to any other. All together there are thus 1

2 (50625 − 135) + 135 = 25380 distinct 
symbols up to this equivalence.

Recall we may add values in 0, 1, 2, 3 to the d-channel markings, and by extension on 
tiles, sets of tiles, configurations and tilings: Take (abcd) +2 := (abc(d+2)) for markings 
other than (+), leaving (+) alone.



C. Goodman-Strauss / Journal of Combinatorial Theory, Series A 160 (2018) 409–445 441
Proposition 1. Let S, S′ be full tiling symbols.

1. The tiling substitutions systems σS and σS′ are hierarchically equivalent if and only 
if S ≈ S′;

2. Σ(TS) and Σ(TS′) are mutually locally decomposible if and only if S ≈ S′;
3. Moreover, if S ≈ S′, then TS = TS′ + 2 and in fact for each atomic α ≈ α′, β ≈ β′, 

Tα = T ′
α + 2, and Tβ→α = Tβ′→α′ + 2.

Proof. We first let S = stuv and define S′ = (t + 3) (s + 3) (u + 3) (v + 3); that 
is, we suppose S ≈ S′. The key observation is that these codes describe precisely the 
same substitutions, merely with a different framing (switching top and bottom, and the 
corresponding codes) — this ambiguity in the coding arises from the two-fold-symmetry 
of the configuration.

Illustrating our codes as

and

we reflect the substitution rule top-to-bottom, and then replace the codes 0 ↔ 2, 1 ↔ 3
(that is, applying +2), as in the figure below. It is worth checking we can reverse the 
order: we may just as well interchange the colors and then flip, for the same result:

The actual isometries used to define the substitution are the same up to conjugation 
by this global reflection, and the codes are only for our notational convenience. Up to a 
global change of coordinates, then, the two substitutions are exactly the same. If S ≈ S′

then σS and σS′ are hierarchically equivalent.
(Why this specific ad hoc relation on symbols? Different encodings will have different 

two-fold ambiguities, and that of Section 4.2 was chosen as it allows us to define S ≈ S′

fairly simply.)
Because TS and TS′ enforce hierarchically equivalent substitution tiling systems, simply 

interchanging 0 ↔ 2 and 1 ↔ 3 in the d-channel (that is, taking each marking m to m+2) 
takes any marked supertile of one to a marked supertile of the other. As this is so in 
either direction, Σ(TS) and Σ(TS′) are mutually locally decomposible. Moreover, since TS
and TS′ are precisely the tiles that appear in the tilings of Σ(TS) and Σ(TS′), we have 
that TS = TS′ + 2 . (See Fig. 20.)

And indeed, this equivalence extends to our atomic sets, as it should: For all atomic 
α ≈ α′ and β ≈ β′, we claim that Tα = Tα′ + 2 and Tβ→α = Tβ′→α′ + 2. This can 
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Fig. 20. Hierarchies for 0231 ≈ 1302. These are congruent if we flip either one vertically and interchange its 
colors 0 ↔ 2, 1 ↔ 3.

be efficiently checked by hand, from the definitions in Section 4, noticing the following 
shortcut:

Take atomic γ(d) to be any of d···, ·d··, ··d·, ···d, and γ′(d) to be the corresponding 
·d··, d···, ··d· or ···d. In a few minutes we check that for each tile [xy|zw] ∈ Tγ(d) (or 
Tβ→γ(d) respectively), the tile [x(y + 1)|w(z + 2)] ∈ Tγ′(d) (or Tβ′→γ′(d)), (recalling that 
�31|+� = �30|+� and �33|+� = �32|+�, so �3d|+� = �3b|+� and �3q|+� = �3p|+�.

We pause for an example; to complete the check does not take much longer. On the 
left, T·d·· + 2 = Td··· for d ∈ 0, 1, 2, 3, on the right T0···→γ(d) + 2 = T·3··→γ′(d):

T·d·· Td···
[0d|32] [0(d + 1)|3(2 + 2)] [0b|30]
[1p|02] [1(p + 1)|0(2 + 2)] [1q|00]
[1d|+] [1(d + 1)|+] [1b|+]
[1b|+] [1(b + 1)|+] [1d|+]
[1q|+] [1(q + 1)|+] [1p|+]

T0···→ T·3··→
d··· �3d|+� ·d·· �3b|+� = �3d|+�

·d·· �3b|00� d··· �3d|02�

··d· �3b|20� ··d· �3d|22�

···d �3d|30� ···d �3b|32�

Once completed, the full check verifies the claim: [xy|zw] ∈ Tγ′(d) (or Tβ′→γ′(d)) if and 
only if [x(y + 3)|zw] ∈ Tγ′(d+3) (or Tβ→γ(d+3)). If α = γ(d), then α′ = γ′(d + 3) and so 
[xy|zw] ∈ Tα (or Tβ→α) if and only if [x(y + 2)|z(w + 2)] ∈ Tα′ (or Tβ′→α′).

Next, conversely, suppose that S 
≈ S′. We first establish that σS and σS′ are not 
hierarchically equivalent. Because S 
≈ S′, there must be a deterministic symbol S0 in, 
say S such that S′0 /∈ S′. Consequently, there are deterministic S0 = s0t0u0v0 
≈ S1 =
s1t1u1v1, with S0 ∈ S, S1 ∈ S′.

For some x ∈ {s, t, u, v}, x0 
= x1. Suppose first that x0 = x1 + 1 or x1 + 3. (This case 
with x = s is illustrated at left below.) Then every 2-level supertile in σS0 is distinct 
from every 2-level supertile in σS1 — the 1-level supertiles in the x positions are not 
in the same orientation. As this is preserved under substitution, for every n ≥ 2, the 
corresponding n-level supertiles in σS0 , σS1 are distinct.

Suppose on the other hand that x0 = x1 + 2. (This case with x = s is illustrated at 
center below, and with x = u at right. Each subcase is similar, as we leave to the reader 
to more fully verify.) Every 3-level supertile in σx0 is distinct from every 3-level supertile 
in σx1 — the 1-level supertiles in the u positions within the 2-level supertiles in the x
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position are not the same, (keeping in mind that u0 = u1 or u1 + 2). As this is preserved 
under substitution, for every n ≥ 3, the corresponding n-level supertiles in σS0 , σS1 are 
distinct.

In short, if S 
≈ S′ then σS and σS′ are not hierarchically equivalent. Finally we prove 
that if S 
≈ S′, then Σ(TS) and Σ(TS′) are not mutually locally decomposable.

It suffices to assume that S and S′ are deterministic, since for each deterministic S0 ⊂ S
and S′0 ⊂ S′, Σ(TS0) ⊂ Σ(TS) and Σ(TS′0) ⊂ Σ(TS′). Any local decomposition from one of 
the larger sets to the other would restrict to a local decomposition on the smaller sets 
as well; consequently if for no pair of smaller sets there is a local decomposition (noting 
they are minimal as subshifts), neither is there among the larger ones. So without loss 
of generality, we assume S and S′ are deterministic, and are each specified by a single 
substitution rule.

Consider any radius R > 0, any tiling T ∈ Σ(TS) and any T ′ ∈ Σ(TS′). We will show 
there exists a pair of distinct tiles t1, t2 ∈ T ′ so that there exist congruent neighborhoods 
C1, C2 in T , containing all tiles within R of the support of t1, t2 respectively. Conse-
quently, there can be no well-defined local decomposition taking C1, C2 to configurations 
containing t1 or t2. Hence there can be no well-defined local map on neighborhoods of 
radius R from T to T ′, and so no local decomposition from Σ(TS) to Σ(TS′). We will have 
shown that TS and TS′ are not mutually locally decomposible.

The substitutions have well-defined inverses (deflations), σ−1
S , σ−1

S′ on the tilings in 
Σ(TS), Σ(TS′). For some n ∈ N, 2n > R and consider T0 = σ−n

S (T ) and T ′
0 = σ−n

S′ (T ′).
Because the substitutions σS and σS′ are not hierarchically equivalent, there exist 

some pair of locations x, g0x ∈ E
2, g0 an isometry, such that x, g0x are in the interiors of 

congruent marked blocks C0, g0C0 in T0 and x and g0x are on non-congruent cornered 
tiles in the interior marked blocks in T ′

0.
Let g = 2ng02−n. Let C1 be the minimal configuration in T containing 2n�C0�; then 

C2 = gC contains 2n�g0C0� and moreover gC ∈ T . But cornered tiles are preserved 
under substitution. The tiles t1, t2 in T ′ at 2nx and 2ng0x = g(2nx) are not congruent, 
and we have completed the proof. �
6. Non-periodic substitution tilings with non-unique decomposition

Every substitution tiling system with unique decomposition contains only non-periodic 
substitution tilings — from [1] onwards, this observation has been at the heart of every 
construction of aperiodic sets of tiles that enforce hierarchical tilings.
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Fig. 21. The 0011 ≈ 3322 and 1100 ≈ 2233 (all of the form ddbb) substitutions are not hierarchically equivalent, 
but have equivalent hierarchical tilings (note that the two configurations at right in the figure are the same) 
— the substitution tilings from the two substitutions are the same, and each substitution tiling thus has 
two distinct hierarchies that can be imposed upon it. The substitutions share the same substitution tiling 
space, but with distinct actions upon it. Interestingly, as Harriss points out, these two systems factor onto 
the product of Thue–Morse symbolic substitutions. The substitutions of the form dddd have non-unique 
hierarchy but are periodic. There are two further deterministic non-periodic, non-unique decomposition 
examples, ddpp, ddqq, and we may take unions of these. Further comments appear in [5].

Moreover, Mossé [9] proved the converse in symbolic substitution systems (essen-
tially equivalent to tiling substitution systems on the line): if the subshift arising from 
a symbolic substitution system is aperiodic then the system has unique decomposition. 
Solomyak [16] extended this to two-dimensional subshifts, that is, substitution tilings on 
which the isometries are all translations. Holton, Radin and Sadun [8] further showed 
that on substitution tiling spaces in which the tiles are oriented only finitely, or densely, 
if non-periodic then the substitution action on the substitution tiling space is one-to-
one, i.e. each tiling in the space has a unique hierarchy under that substitution. (They 
sketch a higher dimensional example of a non-periodic “quasi-substitution” that has 
non-one-to-one action.)

However, the tilings in this section are non-periodic yet have non-unique hierarchy, 
with a one-to-one substitution action on the tiling space! (See Fig. 21.) The trick is 
they have another, distinct one-to-one action as well — That is we give pairs of distinct 
substitution systems that have the same underlying substitution tiling space, yet have 
distinct substitution actions upon it.

(Our tilings fall under Solomyak’s theorem, in any case, if we modify our dominos so 
that they do not need to be rotated or reflected to carry out the substitutions, obtaining 
distinct tiling spaces.)

Proposition 2. Let S = stuv be a full symbol, with s, t, u, v ∈ {0, 1, 2, 3, (02), (13)}
and s = t, u = v. (Note that S ≈ S + 2.) Let S′ = S + 1 or S + 3. Although σS and σS′
are not hierarchically equivalent, every hierarchical tiling of one is a hierarchical tiling of 
the other. Consequently, every hierarchical tiling of either has non-unique decomposition. 
Moreover if s 
= u, then every hierarchical tiling of either is non-periodic.



C. Goodman-Strauss / Journal of Combinatorial Theory, Series A 160 (2018) 409–445 445
There are thus twelve quadruples of substitution systems with equal hierar-
chical tilings, each quadruple in two hierarchically equivalent pairs: (d2, (dq)2) ×
((d, b q, p, (dq), (bp)). Four of these quadruples are deterministic.

Proof. We have already established that any S 
≈ S + 1, S 
≈ S + 3. Take S, S′ as in the 
theorem. Because s = t, u = v, by induction each supertile consists of two rotationally 
symmetric squares. However, for level n > 1, these squares can themselves be partitioned 
into supertiles in two different ways, precisely corresponding to the substitutions S, S′. 
That the tilings are non-periodic can be verified easily by considering marked dominos 
— the orientations of the tiles are visible and imply unique decomposition, hence are 
non-periodic. �

Our unmarked dominos have substitution tilings with non-unique decomposition. But 
because they are just marked dominos with the markings erased as a local derivation, 
the unmarked domino substitution tilings are non-periodic.

In fact, with this example in front of us, we see this phenomenon already occurs in 
simpler settings, and possibly quite widely: The one dimensional non-periodic Fibonacci
symbolic substitution system has non-unique decomposition if we allow ourselves to 
change the global orientation of the hierarchy. Harriss points out that the Rauzy tiles also 
have a natural two fold symmetry in their substitutions and non-periodic substitution 
tilings with non-unique decomposition.
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