
Some little questions

Tag systems

There are several variations on this;

Input: A string of 0’s and 1’s.

We will repeatedly cross off three digits from the front of our string, and tack on digits at the end, by the
following rule: If the first crossed-off digit is 0, we tack on 00; if the first crossed-off digit is 1, we tack on 1101.

There are three possibilities: either our string at some point will have too few letters to cross off, and we halt;
or we might enter into a loop, in which the same strings recur again and again ad infinitum; or we might run
forever, without looping, the strings eventually growing without bound.

For example, if we begin with the string 10101, we cross off 101 from the left and tack on 1101 on the right,
obtaining 101 01 1101 = 011101. Repeating this process we obtain 011 101 00 = 10100, then 001101 and then
once again 10100. So on our third string we enter into a loop of length 2.

Decision Problem: For a given input, does this process loop, halt or run forever without
repeating?

If the process does loop or halt, we’ll find this out, with enough patience. But we would need some idea of
what’s happening to figure out if it runs forever without repeating.

Try these out — or better yet write a program to do so.

1··1··1··0·· (the ·’s aren’t going to matter)

1··1··1··0··1··0··

1··1··0··1··0··1··

More to the point, can you give a theorem that sorts the inputs out, deciding which ones are which?

More generally, such a system is specified by an alphabet, a number k of letters to strike off, and rules for
strings to add on the end, depending on the first letter struck off. The input is a string in the alphabet and the
decision problem is whether or not the procedure will run forever without looping.

Here’s another interesting system, with k = 2 on alphabet a, b, c, with rules

a→bc b→a c→aaa

Beginning with a string of m a’s does this always halt? Can you prove it?



Fractran

A Fractran program is specified by a list of rational numbers, and its input is an integer. At each step, the
current integer is multiplied by the first number on the list that gives an integer for the next step. If there’s no
such fraction, we halt. Again, we might ask, for a given fractran program, does the process halt, repeat, or run
forever without repeating?

So for example:
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Taking as our input 10, we would first multiply by 1/2, obtaining 5; we then multiply by 36/5, obtaining 36;
in this manner, we see 858, then 234; then 5577; 1521; 3549; 8281; 910 and then 100 — 102; after another
thirty-six steps, we have 1000 — 103.

In fact, this program calculates the primes; every power of 10 will be a prime power, in order. Write an emulator
to test this. How does this work?

Generally speaking, given a fractran program, and input, can we figure out if the program runs forever without
repeating?

the Post Correspondence Problem

No big deal... Given a list of allowed pairs of strings, can you select a sequence of pairs so that the concatonation
of the first strings in each pair equals that of the second strings in each pair.

For example, for pairs

[
0

100

]
,

[
01

00

]
,

[
110

11

]
, one solution is
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11
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]
— both top and bottom are the sequence 110011100.

Given a list of pairs, is there a solution?

In this one, we specify that the sequence has to begin with some number n of

[
a

]
’s where the top is the

empty string, and the sequence has to end with some number m of

[
a

]
’s The middle is pairs of[
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bc

]
,

[
ab
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]
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[
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]
,

[
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]
Describe m as a function of n. Can you prove this is correct?



Here are some trickier examples. Try these by hand. Try these by computer. How bad can this be?[
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String substitutions

In this example, we have alphabet 1, A,B,C,D and the following rules, where the ω’s can be anything.

Aω → Aω1
Aω1 → BωCDω1

ω11Cω21 → 1ω1C1ω2

ω1BCω21 → Bω1Cω21

ω1Bω21Cω3D → Bω1ω2CDω3

11BCωD1 → ω1

So for example, starting with A111, we can apply the first and second rules and make the new words A1111
and B111CD1111. The third rule can be applied to that, giving 1B11C1D111. Keep on going!

Show that the strings of just 1’s are exactly the primes!

This one seems innocent enough:

Input: Two words α and ω written in the letters a, b, c, d, e

We are allowed to make the following seven substitutions:
ac ↔ ca ad ↔ da bc ↔ cb bd ↔ db

ce ↔ eca de ↔ edb cdca ↔ cdcae

Decision Problem: Is there a sequence of substitutions taking α to ω?

In fact, each of these systems can encode arbitrary computation, and so has undecidable
questions within it.


