
At the age of 24  Isaac Newton 
wrote his great Principia, the 
foundation of caculus and of 
modern physics.

In this book, he works out one 
physical principle after another, 
describing the motion of 
planets, the action of gravity, 
and any number of other 

fundamental aspects of the natural world, all by using a few 
basic tools.

In hindsight, it is clear how his invention of calculus shapes 
this work, but at the time, it could not have been obvious at 
all: Newton kept his discovery of calculus per se secret for 
another twenty years. 

Principia is full, though, of the kinds of descriptions of 
motion we’ve been using here in class. 

At each moment, an object has a position, and a velocity, 
and something (a force, typically) changing the velocity.  In 
e�ect, this is all his three laws of motion state. Once we 
know the forces, we know how velocity changes, and then 
how the object moves around.

That’s all well and good, but Newton has another powerful 
idea at his disposal; just like we have been doing, we can 
look at this step by step, like the frames of a movie. 

If the frames come faster and faster, we more closely 
approximate the true motion of the object. Indeed, Newton 
felt comfortable using in�nitely brief steps of time!

As we saw earlier, this very idea had caused some trouble 
since ancient times. Part of Newton’s genius was to realize 
that the philosophical issues were irrelevant— whether or 
not in�nitely short moments “exist”, we may as well work as 
though they do. 

(One hundred and �fty years later, Auguste Cauchy �nally 
put this on �rmer ground, as we have already discussed.)

Let’s see this in action!

Suppose a planet is near a star. The 
star’s gravity pulls the planet towards 
it. 

What this means is, no matter how 
the planet is moving, at the next step, 
its velocity direction will be pulled 
closer to the star.

For example:

As the planet moves around the star, 
it is constantly being pulled inwards.

(One other thing: how strong is the force pulling on the 
planet? The further away, the less strong. The exact relation-
ship is that if you double the distance, the force is one 
quarter the strength: that is, the force is proportional to the 
inverse squared distance.)

But why doesn’t it just fall straight in? Basically, in a nutshell, 
it is rocketing past: it is always been pulled it, but its moving 
past the star at the same time.

If we take shorter and shorter time steps we get just the 
right answer: these kinds of paths describe ellipses. In fact, 
Kepler’s three laws of planetary motion come from just this 
argument.

Special Case: To move in a circular path, velocity is always 
tangent to the circle, and the change in the velocity is just 
what we need to get back on track.

If we take in�nitely short time steps, this exactly matches up; 
the forces all point right to the center of the circle 
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Another example:

The end of a spring is being pulled into place by a force 
exactly proportional how far out of whack it is.

In other words, if the end of the spring is x units out of its 
rest position, then dx changes by some multiple of x.

This is called Hooke’s law.

What is calculus?

In all these problems we see changes, and accumulations 
of changes, and are asking about the relationship 
between them. 

For example, if the end of a spring is moving according to 
Hooke’s law, what kinds of paths can the end of a spring 
follow?

Somehow Hooke’s law is relating the position of the 
spring to the change in the position, and calculus is a tool 
for working out that relationship.

A falling ball. 

Assume a falling ball has a starting value of dy to be 1, 
and a starting position of y to be 1. 

At each step we bump up dy by 2, then bump up y by 
dy.

Try this out
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