
Levels of Infinity

Are there as many even numbers as there are counting numbers?

Galileo (yes that one) said this is a paradox: on the one hand, there are obviously half as
many even numbers as counting numbers.

1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

On the other hand, maybe there are exactly as many, because we can match each counting
number up with an even number:

counting numbers 1 2 3 4 5 6 7 . . .
↕ ↕ ↕ ↕ ↕ ↕ ↕ . . .

even numbers 2 4 6 8 10 12 14 . . .

To make sense of this, we just have to clarify, just

What do we mean when we say that two infinite sets are “the same size”?

Almost 300 years later, Georg Cantor pointed out that finite sets are the same size exactly
when their contents can be matched up, one for one. For example, there are the same number
of shapes in Set A as there are fish in Set B, because each fish is matched to a shape and
vice versa.

In fact, when we say there are “four” fish, or “four” shapes, we mean that these sets can be
matched up with a special set of number words, {one, two, three, four}.



Cantor suggested Why not think of this the same way as for infinite sets? We simply say
two sets, whether finite or infinite have the same cardinality (“size”) if all their elements
can be matched up, one-for-one.

So in the drawing, the set of shapes has the same cardinality as the set of fishes. In the
same way, we answer Galileo’s paradox, and sensibly declare that set of even numbers has
the same cardinality as the set of counting numbers.

Sounds good? Well, here come the surprises!!

The Hilbert Hotel

Imagine a hotel1 with rooms numbered 1, 2, 3, 4, 5, . . . , on and on forever, and suppose
each room is occupied.

25446624 25446625 25446626 25446627 25446628 25446629 25446630 2544663125446623

• Suppose another guest shows up and would like to check in. How can the hotel
make room by moving the guests already there? (The hotel has to actually give room

numbers to all of the guests! It’s not legit to just ask the guest to go to the end and find the

last room— what last room?)

• What if five new guests appear and want to check in?

• How about a billion?

• What if a counting number’s worth of new guests ask for rooms? To answer this
question, you must give a rule for where each guest already in the hotel moves to,
and for where each new guest moves into.

• Can the hotel accomodate as many new guests as there are real numbers?

HI  I'M

A set is countably infinite2 if it has the same cardinality as the set3 of counting numbers
N = {1, 2, 3, . . . }— in other words, if its elements can be matched one-to-one with the
counting numbers. This term makes sense: a set is countably infinite if its elements can be
listed in an infinite list.

1Named for the great mathematician David Hilbert, an early champion of Cantor’s idea.
2A countable set, officially, is any finite or countably infinite set. Really, when most people (me included)

say “countable”, we mean “same cardinality as N”, countably infinite.
3Unfortunately, there is not a standard meaning for N. Some mathematicians define N = {0, 1, 2, ...} and

others define N = {1, 2, 3, ...}. Oh well. Just have to say which you mean every time. But the cardinality of
these two sets is the same. Why?



Show that these sets are countable:

• {5, 6, 7, 8, . . . }

• The set of even numbers.

• The set of prime numbers.

• The set of square numbers.

• Now for an interesting example. The set of all integers Z = {...,−3,−2,−1, 0, 1, 2, 3, . . . }
is countable! What is a way to match these up with the counting numbers?

counting numbers 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

the integers 0 . . .

• Here is the first real surprise: The set of all rational numbers is countable! This is amazing,
because the rational numbers are “dense” on the real number line— in any interval, no matter
how small, there are infinitely many rational numbers! And yet they can be listed out, and
matched with the counting numbers. To simplify matters, we’ll just show the positive rational
numbers are countable, using Cantor’s original method. We list the positive rationals in this
order, striking out any duplicates

sum of numerator listed in order
and denominator of numerator

2 1/1
3 1/2 2/1
4 1/3 2/2 3/1
5 1/4 2/3 3/2 4/1
6 1/5 2/4 3/3 4/2 5/1
7 1/6 2/5 3/4 4/3 5/2 6/1
...

. . .

This gives a matching with the counting numbers:

counting numbers 1 2 3 4 5 6 7 8 9 10 11 12 . . .
↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

rational numbers 1/1 1/2 2/1 1/3 3/1 1/4 2/3 3/2 4/1 1/4 5/1 1/6 . . .

Complete a few more rows of the table and extend the list!



The Reals Are Not Countable!

So you might be thinking every infinite set is countable. But Cantor showed that’s just not
so:

Cantor showed that there are vastly more real numbers than there are counting numbers.
You simply cannot list out the reals!!

Any infinite list of real numbers must be missing something; let’s see how with an example.
For simplicity, suppose we have a list of real numbers between 0 and 1, like this one:

1 0. 8 4 6 9 6 3 8 3 6 . . .

2 0. 4 0 2 3 2 6 5 4 8 . . .

3 0. 4 7 5 7 4 5 1 4 0 . . .

4 0. 6 5 4 0 8 0 7 8 3 . . .

5 0. 7 1 8 4 8 6 6 3 4 . . .

6 0. 1 8 5 4 1 5 3 5 4 . . .

7 0. 0 7 3 9 1 0 5 3 8 . . .

8 0. 2 9 2 7 3 1 0 1 4 . . .

9 0. 9 2 7 1 9 6 1 5 8 . . .
...

. . .

But then the real number 0. 9 1 6 1 9 6 6 2 9 .... is not on the list — it differs from the
first number on the list in the first digit, the second number in the second digit, and so on.

No matter what the original list was, we could always cook up a new real number that’s not
on the list. NO list could ever have been a complete listing of all of the reals!!

In fact, there are vastly many more reals than there are counting numbers — the counting
numbers are a neglible, “measure 0” subset of the reals.



Other surprising examples

The cardinality of the set of reals is the same as that of any interval of reals! For example,
there are just as many numbers in the interval (−1, 1) as there are reals! The function
f(x) = x/(x2 − 1) matches the numbers (0, 1) one-for-one with all of the reals.4

The cardinality of the entire plane is the same as that of the line! More simply, we can match
the points in the unit square with the points in the unit interval. For example, we match

(0.1234..., 0..9876...) ↔ 0.19283746...

An Infinity of Infinities!

For any set A, the power set P(A) is the set of all subsets of A. For example, if A = {a, b, c},
then P(A) consists of the eight (23) subsets, {}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c} and {a, b, c}.
There are 2× 2× 2 subsets because — each of the three elements of A can be in a subset or
not. In this way, for any finite set A of cardinality n, the cardinality of P(A) is 2n ̸= n.

This is true in general. Cantor proved that the cardinality of any set A is strictly less (in
a way we’ll describe in a moment) than the cardinality of its power set P(A). So starting
with N, we have an infinity of infinite cardinalities (!!)

N, P(N), P(P(N)), P(P(P(N))), P(P(P(P(N)))), . . .

Proof: Let A be a set, and suppose there were a one-to-one matching with the elements of
P(A) with all of the subsets of A. We will show this leads to a contradiction, and so no such
matching could exist.

So suppose each element s of A is matched with some subset f(s) ⊂ A. Any s might be an
element of f(s), or not, depending on the matching. We define the subset

C := {the elements s of A so that s is not an element of f(s)}

We’ve supposed (for contradiction) that every subset of A has been matched up — for all
S ⊂ A, there is some element s of A with f(s) = S. In particular, there is some c so that
f(c) = C.

4For any real number y, there is a unique x in (0, 1) with f(x) = y, namely x = (1−
√
1 + 4y2)/(2y).



BUT, c cannot be in C: If c were in C then c is not in f(c) = C, a contradiction.

On the other hand if c is not in C then c is not in f(c), and so c is in C, again a contradiction.

So c cannot be in C, and cannot not be in C— the issue is that this c could not have existed
in the first place.

The cardinalities of A and P(A) could not have been the same!

Comparing infinities

More generally, we can define the relationship that “set A has at least the cardinality of set
B” iff there is a one-to-one matching from the elements of B to at least some of the elements
of A.

It’s not obvious that the cardinality of any two sets could be compared in this way, that all of
the possible cardinalities can be put in order. In fact, that this is so is an axiom, equivalent
to the “Axiom of Choice”, “Zorn’s Lemma” and “The Well-Ordering Principle”.

The Cantor-Schroeder-Bernstein Theorem shows that if A has (by this definition) at least
the same cardinality of B and B has at least the cardinality of A, then A and B have the
same cardinality as each other. It is therefore meaningful to define “A has strictly greater
cardinality than B” if A has a least the cardinality of B but B does not have at least the
cardinality of A.

The proof of this theorem is subtle: given a one-to-one matching from the elements of B to
some of the elements of A, and another from the elements of A to B, one must show there
is a one-to-one matching between all of the elements of A and all of the elements of B.

But this raises a big question:

It turns out that the set of reals has the same cardinality as P(N). But is there anything
in between? It turns out, incredibly, that you can take this either way, introducing this as a
new axiom, without introducing any contradiction — Paul Cohen won the Fields Medal for
his proof the independence of “The Continuum Hypothesis” in 1966.

Further reading

Logicomix! is up in the MoMath bookstore.

Aha! Gotcha! by Martin Gardner.


