
Motion!

How do things move and accelerate? How can we model
this inside of a program like scratch?

To begin, let’s play a simple game, racing around a track
drawn on some graph paper!

You’ve got some paper, so draw yourself a track and �nd a
challenger. At �rst your “cars” are stopped at the start line
and you can move one square in any
direction. Of course if you run o� the
track, you crash!

From now on, it works like this. If on the
last turn you moved some amount, you
can move the same amount the next
time, plus one additional square (if you
so choose)
So for example:

If your last move was along the dark marked line, the next
move has to be the same, with the option of moving one
more square as shown. Of course this a�ects the next
move too! Can this player avoid crashing?

The point of all that is that we can describe motion very
nicely. At each moment, we have a position and a
velocity. The velocity at each moment is the change in
our position at the next.

But we can steer too! Our velocity isn’t �xed from one
moment to the next. The change in our velocity is our
acceleration, and this is what we are choosing from
moment to moment as we play the game.

So we have the following variables:

x and y (for our position)
dx and dy (for the change in our position, the velocity)

Initially we set these to
(x,y) = wherever we want to start
(dx,dy)=0

Then we repeat forever:

Ask the player what should the acceleration be? One
squre N, S, E, W or NW, NE, SW, SE? In a computer game,
we could use the arrow keys to learn this, so let’s do it
that way here:

If the left arrow key is pressed, set dx to be dx + 1
If the right arrow key is pressed, set dx to be dx – 1
If the up arrow key is pressed, set dy to be dy + 1
If the down arrow key is pressed, set dy to be dy – 1

Now we change our position:
Set x to be x + dx
Set y to be y + dy

And repeat.

This same idea is incredibly useful for modeling all kinds
of motion.

For example, how can we model a bouncing ball?

It’s really pretty easy!

A bouncing ball is always being pulled down. It’s vertical
acceleration is always towards the �oor.

Try this experiment: draw a �oor and some walls, and
send a ball �ying through the air!

This time, it works a little di�erently.

Whatever your velocity was before,
you drop one square lower at the
next step.

Of course, if you hit the �oor, or the
walls, you bounce!

To �gure out how your ball moves when you bounce, go
ahead and move it past the wall or �oor, then re�ect it
and the vector back. For example:

and then continue with the bounced position and
velocity!

We can model this pretty simply. Let’s just suppose
there is a �oor at y = 0. We’ll drop the ball by just one
unit per move (but you can experiment!)

Initially we set the position (x,y) and the velocity (dx,dy)
to whatever we want.

Then we repeat forever:

(dx isn’t changing)
set x to be x + dx

if y>0, then set dy to be dy – 1
otherwise, set dy to be – dy

set y to be y + dy

Does it work the way it is supposed to?

