A"proof" that every triangle is equilateral.

It is remarkably difficult to spot the error-this will be your homework for the year. If you make a careful sketch in Geometer's Sketchpad, you will be able to discover where the flaw is. Hint: all the triangles we will claim are congruent really are-that's not the problem.

Given any triangle $A B C$, we shall prove that $A B$ is congruent to $A C$. Consequently, since we may label the vertices however we please and the proof will still "work", this implies that all three sides are congruent and the triangle is equilateral!

Begin by constructing the angle bisector of angle BAC, and the perpendicular bisector of segment $B C$. Suppose for contradiction that triangle $A B C$ is not isosceles. Then these lines are not parallel and meet at some point 0 .

Clearly O cannot be on segments $A B$ or $A C$ (since O lies on the bisector of the angle between them). And if O lies on segment $B C$, the angle bisector is then be the perpendicular bisector of $B C$, the triangle would be isosceles (AAS), and we have proven $A B$ is congruent to $A C$ as promised..

We still have two cases to consider: The point O is inside the triangle $A B C$, or the point O is outside the triangle B.

Let M be the midpoint of $B C$.
From O drop the perpendiculars to sides $A B$ and $A C$, to points D and E , and draw segments BO and CO .

Now, triangles BMO and CMO are congruent, by SAS, so segments BO and CO are congruent.

Triangles DOA and EOA are congruent by AAS, so segments DO and EO are congruent, as are segments AD and AE.

Triangles DOB and EOC are both right triangles, and have congruent hypotenuses and a congruent leg. By the Pythagorean theorem the other legs, segments BD and CE are congruent as well, and so by SSS are congruent triangles.

Segment $A B$ is equal to $A D$ and $D B$. Segment $A C$ is equal to $A E$ and $E C$. Since segment $A D$ is congruent to segment $A E$, and segment DB is congruent to segment EC, we have proved that segment $A B$ is congruent to $A C$.

Let M be the midpoint of $B C$.
From O drop the perpendiculars to lines $A B$ and $A C$, to points D and E , and draw segments BO and CO .

Now, triangles BMO and CMO are congruent, by SAS, so segments BO and CO are congruent.

Triangles DOA and EOA are congruent by AAS, so segments DO and EO are congruent, as are segments AD and AE.

Triangles DOB and EOC are both right triangles, and have congruent hypotenuses and a congruent leg. By the Pythagorean theorem they have the other leg congruent as well, and so by SSS are congruent triangles.

Segment $A D$ is equal to $A B$ and $B D$. Segment $A E$ is equal to $A C$ and $C E$. Since segment $A D$ is congruent to segment $A E$, and segment DB is congruent to segment EC, we have proved that segment $A B$ is congruent to $A C$.

